• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Integrable Systems and WKB Analysis

Research Project

Project/Area Number 13640167
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

TAKEI Yoshitsugu  KYOTO UNIVERSITY, Research Institute for Mathematical Sciences, Associate Professor, 数理解析研究所, 助教授 (00212019)

Co-Investigator(Kenkyū-buntansha) KOIKE Tatsuya  KYOTO UNIVERSITY Graduate School of Science, Instructor, 大学院・理学研究科, 助手 (80324599)
Project Period (FY) 2001 – 2003
KeywordsExact WKB analysis / Painleve hierarchy / Lax pair / Turning point / (New) Stokes curve / Exact steepest descent method / Transition probability / Microdifferential equation
Research Abstract

In this project, with the aid of Prof. T. Kawai (RIMS, Kyoto Univ.) and Mr. Y. Nishikawa (a graduate student of Kyoto Univ.), we have mainly studied generalization of exact WKB analysis to higher order Painleve equations that are obtained from integrable systems. First, for several hierarchies of higher order Painleve equations such as the (P_I) hierarchy obtained from the most degenerate Garnier system, the (P_<II>) hierarchy obtained by reduction of the KdV hierarchy, and the Noumi-Yamada system (i.e., (P_<IV>) and (P_V) hierarchy), we have found that turning points and Stokes curves ("Stokes geometry") of these nonlinear equations are closely related with those of the associated Lax pair. Secondly, it is discovered that Stokes curves of higher order Painleve equations do cross and a new Stokes curve emanates from a crossing point. A new Stokes curve can be understood as a Stokes curve emanating from a virtual turning point, which is also characterized in terms of the Stokes geometry of the associated Lax pair. Lastly, we have shown that a 0-parameter solution (i.e., an algebraically constructed formal solution without any free parameter) of any member of (P_I) and (P_<II>) hierarchies can be locally transformed to that of the traditional (P_I) equation near a simple turning point of the first kind. To examine if these results hold for more general nonlinear equations arising as compatibility condition of Lax pairs will be a main problem in future. In parallel with the above researches, we have also studied the following related subjects: (i) refinement of the exact steepest descent method, a method detecting new Stokes curves of linear equations, (ii) exact WKB analysis for systems of linear equations and its application to computations of transition probabilities, and (iii) exact WKB analysis for microdifferential equations of WKB type.

  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : A new method for the description of Stokes curves"Journal of Mathematical Physics. 42. 3691-3713 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics A : Mathematical and General. 35. 2401-2430 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painleve equation"ANZIAM Journal, Australian Mathematical Society. 44. 111-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes curves""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 1-22 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Koike, Y.Takei: "The effect of new Stokes curves in the exact steepest descent method""Microlocal Analysis and Complex Fourier Analysis", World Scientific. 186-199 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 竹井義次: "完全WKB解析、そして完全最急降下法-特異摂動の代数解析学続論-"数学. 55. 350-367 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On global aspects of exact WKB analysis of operators admitting infinitely many phases"Contemporary Mathematics. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Takei: "Toward the exact WKB analysis for higher-order Painleve equations-The case of Noumi-Yamada systems"Publications of RIMS, Kyoto University. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method: A new method for the description of Stokes curves"Journal of -Mathematical Physics. 42. 3691-3713 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Aoki, T.Kawai, Y.Takei: "Exact WKB analysis of non-adiabatic transition probabilities for three levels"Journal of Physics A : Mathematical and General. 35. 2401-2430 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Takei: "On an exact WKB approach to Ablowitz-Segur's con-nection problem for the second Painleve equation"ANZIAM Journal, Australian Mathematical Society. 44. 111-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Aoki, T.Koike, Y.Takei: "Vanishing of Stokes curves"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 1-22 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Koike, Y.Takei: "The effect of new Stokes curves in the exact steepest descent method"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 186-199 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Takei: "Exact WKB analysis, and exact steepest descent method"Sugaku(In Japanese.). 55. 350-367 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y: "On global aspects of exact WKB analysis of operators admitting infinitely many phases"Contemporary Mathematics. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Takei: "Toward the exact WKB analysis for higher-order Painleve equations -The case of Noumi-Yamada systems"Publications of RIMS,(Kyoto University). (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi