• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Asymptotic Profiles of Solutions to Nonlinear Convection-Diffusion Equations

Research Project

Project/Area Number 13640177
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

NAGAI Toshitaka  Hiroshima Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40112172)

Co-Investigator(Kenkyū-buntansha) KURA Takeshi  Hiroshima Univ., Graduate School of Science, Research Associate, 大学院・理学研究科, 助手 (10161720)
IKEHATA Ryo  Hiroshima Univ., Graduate School of Education, Associate Professor, 大学院・教育学研究科, 助教授 (10249758)
YOSHIDA Kiyoshi  Hiroshima Univ., Faculty of Integrated Arts and Sciences, Professor, 総合科学部, 教授 (80033893)
KOBAYASHI Takayuki  Kyushu Inst. Of Technology, Faculty of Engineering, Associate Professor, 工学部, 助教授 (50272133)
MATSUMOTO Toshitaka  Hiroshima Univ., Graduate School of Science, Research Associate, 大学院・理学研究科, 助手 (20229561)
Project Period (FY) 2001 – 2002
KeywordsConvection-diffusion equations / Global solutions in time / Blowup solutions / Asymptotic profiles of solutions / Stationary solutions
Research Abstract

The purpose of this research is to study the large time behavior of solutions and asymptotic profiles of decaying solutions to nonlinear convection-diffusion equations, and also to show the existence of global solutions. Especially, we focus on convection-diffusion diffusion equations related to chemotaxis and obtained the following results.
1. Every bounded solution of the Cauchy problem to a convection-diffusion equation in R^n (n 【greater than or equal】2) decays to zero as t 【tautomer】∞ and behaves like the heat kernel.
2. The existence of bounded solutions of the Cauchy problem mentioned just above is obtained under the smallness of L^1-norm of initial functions.
3. We consider a convection-diffusion equation without the chemical diffusion in a bounded interval under Neumann boundary conditions, and show the long time behaviour of solutions.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] T.Nagai: "Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in R^n"Funkcialaj Ekvacioj. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matsumoto: "Semilinear evolution equations with nonlinear constraints and applications"Journal of Evolution Equations. 2. 197-222 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kura: "A Laplacian comparison theorem and its applications"Proceedings of the Japan Academy. 78. 7-9 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Ikehata: "Diffusion phenomenon for linear dissipative wave equations in unbounded domains"Journal of Differential Equations. 186. 633-651 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Remark on the rate of decay of solutions to linearlized for the compressible Navier-Stokes equations"Pacific Journal of Mathematics. 207. 199-234 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Nagai: "Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in R^n"Funkcialaj Ekvacioj, to appear. in press.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matsumoto: "Semilinear evolution equations with non-linear constraints and applications"Journal of Evolution Equations. 2. 197-222 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Kura: "A Laplacian comparison, theorem and its application"Proceedings of the Japan Academy. 78. 7-9 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ikehata: "Diffusion phenomenon for linear dissipative wave equations in unbounded domains"Journal of Differential Equations. 186. 633-651 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Kobayashi: "Remark on the rate of decay of solutions to liberalized for compressible Navier-Stokes equation"Pacific Journal of Mathematics. 207. 199-234 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi