• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Group actions on operator algebras

Research Project

Project/Area Number 13640210
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionKyoto University

Principal Investigator

IZUMI Masaki  KYOTO UNIVERSITY Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (80232362)

Project Period (FY) 2001 – 2003
KeywordsC^*-algebra / group action / K-theory / Tate cohomology / factor / quantum group / non-commutative probability / quantum homogeneous space
Research Abstract

I completely characterized the K-groups of C^*-algebras allowing finite group actions with the Rohlin property. More precisely, such K-groups are characterized as completely cohomologically trivial G-modules. As an application, I showed that in two "classifiable" classes of nuclear C^*-algebras, finite group actions with the Rohlin property are completely classified in terms of their actions on the K-groups. Showing that every completely cohomological trivial G-module is inductive limit of induced G-modules, I construct model actions with the Rohlin property for a given K-theoretical invariant. These results show that one can always deal with models in order to investigate this class of actions. Several applications of this fact are expected in the future.
The dual notion of the Rohlin property is approximate representability. As an application of the above-mentioned result, I completely characterized when a quasi-free action of a prime power order cyclic group on the Cuntz algebra is approximately representable. There is no intuitive explanation for this result and it is an interesting consequence of a croup cohomology argument.
In a joint work with S. Neshveyev and L. Tuset, we conjectured that the Poisson boundary of the dual of the quantum group SUq(n) is the quantum flag manifold SUq(n)/T^<n-1>, and we gave a proof for n=3. We noticed strong similarity between the non-commutative Poisson integral map, which I introduced before, and Berezin quantization. Using this observation, our proof ends up with analysis of a certain Markov operator acting on the space of quantum zonal spherical functions. Our approach probably works for general q-deformation of compact semi-simple Lie groups and we are pursuing it now.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Masaki Izumi: "Inclusions of simple C^*-algebras."Journal fur die Reine und Angewandte Mathematik. 547. 97-138 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Non-commutative Poisson boundaries and compact quantum group actions"Advances in Mathematics. 169・1. 1-57 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Characterization of isomorphic group-subgroup subfactors."International Mathematics Research Notices. 34. 1791-1803 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Canonical extension of endomorphisms of type III factors."American Journal of Mathematics. 125. 1-56 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Finite group action on C^*-algebras with the Rohlin property, I."Duke Mathematical Journal. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Finite group action on C^*-algebras with the Rohlin property, II."Advances in Mathematics. 184・1. 119-160 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Masaki Izumi: "Inclusions of simple C^*-algebras."Journal fur die Reine and Angewandte Mathematik. 547. 97-138 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki Izumi: "Non-commutative Poisson boundaries and compact quantum group actions."Advances in Mathematics. 169. 1-57 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki Izumi: "Characterization of isomorphic group-subgroup subfactors."International Mathematics Research Notice. 34. 1792-1803 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki Izumi: "Canonical extension of endomorphisms of type III factors."American Journal of Mathematics. 125. 1-56 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki Izumi: "Finite group action on C^*-algebras with the Rohlin property, I."To appear in Duke Mathematical Journal.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masaki Izumi: "Finite group action on C*-algebras with the Rohlin property, II."Advances in Mathematics. 184. 119-160 (2004)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi