Research Abstract |
Recalcitrant organosulfur compounds such as dibenzothiophene (DBT) derivatives in light gas oil (LGO) cannot be removed by hydrodesulfurization using metallic catalysts. The thermophilic bacteria, Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1, were isolated for its ability to grow on DBT as the sole source of sulfur at 50℃. In addition to DBT, WU-S2B and WU-F1 also could desulfurize alkylated DBTs such as 4, 6-dimethyl DBT through a sulfur-specific degradation pathway with the selective cleavage of carbon-sulfur bonds. Moreover, when resting cells of WU-F1 were incubated at 45℃ with two types of hydrodesulfurized LGOs in the reaction mixtures containing 50%(v/v)oils, the biodesulfurization reduced the sulfur contents from 120 to 50 ppm S (F-LGO) and from 34 to 15 ppm S (X-LGO), respectively. Gas chromatography analysis with an atomic emission detector revealed that the peaks of alkylated DBTs including 4-methyl DBT, 4, 6-dimethyl DBT, and 3, 4, 6-trimethyl DBT significantly decreased after the biodesulfurization. The DBT-desulfurization genes, bdsABC, were cloned from these two bacteria, and the flavin reductase genes, frb and frm, were also cloned from WU-S2B and Wu-F1, respectively. The recombinant WU-F1 carrying one more set of bdsABC and frm was constructed, and the desulfurizing activity of the recombinant strain was 2. 2-fold higher than that of the wild type strain WU-F1.
|