• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

EVALUATION AND MANAGEMENT OF CREDIT RISK USING COMPUTATIONAL INTELLIGENCE AND MULTI-OBJECTIVE DECISION MAKING

Research Project

Project/Area Number 13680540
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 社会システム工学
Research InstitutionKONAN UNIVERSITY

Principal Investigator

NAKAYAMA Hirotaka  KONAN UNIVERSITY, DEPARTMENT OF INFORMATION SCIENCE AND SYSTEMS ENGINEERING, PROFESSOR, 理工学部, 教授 (20068141)

Project Period (FY) 2001 – 2003
KeywordsCREDIT RISK / SUPPORT VECTOR MACHINE / MULTI-OBJECTIVE PROGRAMMING / DATA ENVELOPMENT ANALYSIS / 能動忘却 / サポートベクターマシン / RBFネットワーク / DEA
Research Abstract

In financial activities such as investment and business finance, it is important to evaluate moderately credit risk against business failure of enterprises. The aim of this research is to construct a system for evaluating credit risk of enterprises using computational intelligence and for managing the risk to get as much profit as possible under some allowable risk by virtue,of multiple criteria decision making.
Firstly, support vector machines(SVMs) were applied to evaluate credit risk of enterprises on the basis of qualitative and quantitative data sets. Those data sets for business failure have some unbalance : failure data are only a few percentage, and almost of all date are of nonfailure. In order to overcome this problem, SVMs were modified by using multi-objective programming and/or goal programming. As a result, the modified SVM showed a good classification ability for the category with extremely fewer elements. Moreover, the rough set theory was applied to extract simple and e … More xplicit rules from the obtained support vectors.
Secondly, dynamically adapting learning machines for the change of environment were developed. Learning machines can increase their ability by making incremental learning. If we make only incremental learning, however, the decision rule becomes more and more complex, which resluts in poor generalization. Therefore, it is needed to remove unnecessary(or obstacle) data under the present situation. This is called "forgetting". In this research were developed several methods for forgetting not only in a passive manner in which the influence of data decreases over time but also in an active way in which unnecessary(obstacle) data are found and removed actively.
If we only avoid risk, we can not make an active financial activities, because every financial activitiy has some risk. Finally, therefore, data envelopment analysis(DBA) was applied to evaluate the efficiency of decision unit in order to get as much profit as possible under some allowable risk. Since the conventional DEA is based on the convex hull of data set taking into account the linear value judgment, it can not be applied to problems under nonlinear value judgment. A generalized DEA was developed to attempt to measure the efficiency of decision unit under several kinds of nonlinear value judgments. The effectiveness of the generalized DEA was proved through several examples. Less

  • Research Products

    (61 results)

All Other

All Publications (61 results)

  • [Publications] H.Nakayama, M.Arakawa et al.: "A Computational Intelligence Approach to Optimization with Unknown Objective Functions"Artificial Neural Networks-ICANN2001. 73-80 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, T.Kotera, et al.: "Rule-based Prediction with Additional Learning in Financial Problems"Knowledge-based Intelligent Information Engineering Systems & Allied Technologies. 723-727 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, K.Washino: "Simulation-based Optimization using SVM and GA"Knowledge-based Intelligent Information Engineering Systems & Allied Technologies. 466-470 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Arakawa, H.Nakayama, et al.: "Approximate Optimization of Constraint Problem Using Radial Basis Function and Self-Organizing Maps"8th Symposium on Multidisciplinary Analysis and Optimization. AIAA2000(CD-ROM). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.B.Yun.H.Nakayama, et al.: "Generation of Efficient Frontiers in Multi-Objective Optimization Problems by Generalized Data Envelopment Analysis"European J. of Operational Research. 129・3. 586-595 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒川雅生, 中山弘隆, 石川浩: "ラディアルベーシス関数ネットワークと領域適応型遺伝的アルゴリズムを用いた最適設計(第1報 制約条件のない場合における検討)"日本機械学会論文集. 67・655. 789-796 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒川雅生, 中山弘隆, 石川浩: "ラディアルベーシス関数ネットワークと領域適応型遺伝的アルゴリズムを用いた最適設計(第2報 制約条件のある場合における検討)"日本機械学会論文集. 67・655. 797-802 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, T.Asada: "Support Vector Machines formulated as Multiobjective Linear Programming"Proc. of 5th International Conference on Optimization : Technology and Applications. 1171-1178 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.B.Yun, H.Nakayama.et al.: "Dual Approach to Generalized Data Envelopment Analysis Based on Production Possibility"Multiple Objective and Goal Programming(Ed. by T.Trzaskalik, J.Michunik). 196-208 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒川雅生, 中山弘隆, 石川浩: "ラディアルベーシス関数ネットワークと領域適応型遺伝的アルゴリズムを用いた最適設計(第3報 自己組織化マップを用いたデータの生成法の利用)"日本機械学会論文集. 68・669. 184-191 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, M.Arakawa, R.Sasaki: "Simulated-based Optimization using Computational Intelligence"Optimization and Engineering. 3. 201-214 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 佐藤丈晴, 荒川雅生, 中山弘隆, 他: "DEAを用いたがけ崩れにおける警戒避難基準雨量の設定"土木学会論文集. 707/VI-55. 153-163 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 岡本正夫, 荒木義則, 中山弘隆, 他: "ラフ集合を用いたデータマイニングによる土砂移動現象の重要要因及びルール抽出に関する研究"砂防学会. 54・6. 4-15 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, K.Yoshii: "Effectiveness of Active Forgetting in Machine Learning Applied to Financial Problems"J. of Telecommunications and Information Technology. 3. 24-29 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, T.Asada: "Support Vector Machine using Multi Objective Programming and Goal Programming"Proc. of ICONIP. (in CD-ROM). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, A.Hattori: "Additional Learning and Forgetting by Support Vector Machine and RBF Networks"Proc. of ICONIP. (in CD-ROM). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, K.Washino: "Optimization for Black-Box Objective Functions using Sensitivity Information SVM"Proc. of ICONIP. (in CD-ROM). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama: "MOP/GP Approaches to Data Mining"Multi-objective Programming and Goal-Programming((Eds) T.Tanino, T.Tanaka, M.Inuiguchi). 27-34 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Asada, H.Nakayama: "Support Vector Machines using Multi-objective Programming"Multi-objective Programming and Goal-Programming((Eds) T.Tanino, T.Tanaka, M.Inuiguchi). 93-98 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yoon, H.Nakayama, Y.Yun: "Support Vector Machines Controlling Noise Influence Directly"計測自動制御学会論文集. 39・1. 82-84 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 浅田武史, 中山弘隆: "多目的線形計画法を用いたサポートベクターマシン"システム制御情報学会論文誌. 16・2. 70-76 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, Y.Yun, et al.: "Goal Programming Approaches to Support Vector Machines"Proc. of KES03. 356-363 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, A.Hattori: "Incremental Learning and Forgetting in RBF Networks and SVMs"Proc. of KES03. 1109-1115 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, et al.: "Using Support Vector Machines in Optimization for Black-box Objective Functions"Proc. of IJCNN'2003. 1617-1622 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yoon, Y.Yun, H.Nakayama: "A Role of Total Margin in Support Vector Machines"Proc. of IJCNN'2003. 2049-2053 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakayama, et al.: "Optimization for Black-box Objective Functions"Optimization and Optimal Control. 185-210 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒川雅生, 八木俊朗, 中山弘隆, 他: "データ包絡分析法を用いた総合技術指標の構築手法"機械学会論文集. 69-685C. 2411-2417 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 荒川雅生, 中山弘隆, 石川浩: "領域遺伝型遺伝的アルゴリズムの開発(多目的最適設計の場合)"機械学会論文集. 69-686C. 2707-2713 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C.A.Floudas, P.M.Pardalos (eds.): "Encyclopedia of Optimization"Kluwer Academic Publishers. 1100 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Ehrgott, X.Gandibleux (eds.): "Multiple Criteria Optimization, State of the Art, Annotated Bibliographic Surveys"Kluwer Academic Publishers. 500 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山川宏 編: "最適設計ハンドブック"朝倉書店. 506 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Arakawa, H.Nakayama, R.Sasaki, H.Ishikawa: "Approximate Optimization of Constraint Problem Using Radial Basis Function and Self-Organizing Maps"8th Symposium on Multidisciplinary Analysis and Optimization(AIAA2000-4922). (CD-ROM). (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.B.Yun, H.Nakayama, T.Tanino, M.Arakawa: "Generation of Efficient Frontiers in Multi-Objective Optimization Problems by Generalized Data Envelopment Analysis"European Journal of Operational Research. Vol.129、No.3. 586-595 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Arakawa, H.Nakayama, H.Ishikawa: "Optimum Design Using Radial Basis Function Network and Adaptive Range Genetic Algorithms(1st Report : Consideration in Unconstrained Optimization)"Trans, of JSME(in Japanese). 67/655C. 789-796 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Arakawa, H.Nakayama, H.Ishikawa: "Optimum Design Using Radial Basis Function Network and Adaptive Range Genetic Algorithms(2nd Report : Consideration in Constraint Optimization)"Trans, of JSME(in Japanese). 67/655C. 797-802 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, M.Arakawa, R.Sasaki: "Optimization with Unknown Objective Functions using Computational Intelligence -A Comparative Study with RSM"Proc.of 5^<th> International Conference on Optimization : Technology and Applications Hong Kong(Ed.D.Li). 1163-1170 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, T.Asada: "Support Vector Machines formulated as Multiobjective Linear Programming"Proc.of 5^<th> International Conference on Optimization : Technology and Applications Hong Kong(Ed.D.Li). 1171-1178 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Arakawa, H.Nakayama, H.Ishikawa: "Optimum Design Using Radial Basis Function Network and Adaptive Range Genetic Algorithms(3rd Usage of Data Generation by Using Self-Organizing Maps)"Trans.of JSME(in Japanese). 68/669C. 1526-1533 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, M.Arakawa, R.Sasaki: "Simulation-based Optimization using Computational Intelligence"Optimization and Engineering. 3. 201-214 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sato, M.Arakawa, H.Nakayama, et al.: "A Study on setting a critical rainfall for the warning and evaluation based on data envelopment analysis"Trans.of Japan Society of Civil Engineering(in Japanese). 707/VI-55. 153-163 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.OKamoto, Y.Araki, H.Nakayama, et al.: "A Study on the Extraction of Major Factors and Certain Laws of Sediment Transport Phenomenon by Applying the Rough Set Theory for Daa Mining"Journal of the Japan Society of Erosion Control Engineering(in Japanese). 54. 4-15 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, K.Yoshii: "Effectiveness of Active Forgetting in Machine Learning Applied to Financial Problems"J.of Telecommunications and Information Technology. Vol.3. 24-29 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, T.Asada: "Support Vector Machine using Multi Objective Programming and Goal Programming"Proc.International Conference on Neural Information Processing. (CD-ROM). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, A.Hattori: "Additional Learning and Forgetting by Support Vector Machine and RBF Networks"Proc.International Conference on Neural Information Processing. (CD-ROM). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, K.Washino: "Optimization for Black-Box Objective Functions using Sensitivity Information in SVM"Proc.International Conference on Neural Information Processing. (CD-ROM). (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Yoon, H.Nakayama, Y.Yun: "Support Vector Machines Controlling Noise Influence Directly"Trans.of SICE. 39. 82-84 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Asada, H.Nakayama: "Support Vector Machines using Muli Objective Linear Programming"Trans.of ISCIE(in Japanese). 16. 70-76 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, M.Arakawa, K.Washino: "Using Support Vector Machines in Optimization for Black-box Objective Functions"Proc.of International Joint Conference on Neural Networks 2003, Portland, IEEE and International Neural Network Society. 1617-1622 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Yoon, Y.Yun, H.Nakayama: "A Role of Total Margin in Support Vector Machines"Proc.of International Joint Conference on Neural Networks 2003, Portland, IEEE and International Neural Network Society. 2049-2053 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Arakawa, T.Yagi, H.Nakayama: "Evaluation Method of Total Technical Evaluation Using Data Envelopment Analysis"Trans.of JSME(in Japanese). 68/685C. 2411-2417 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Arakawa, H.Nakayama, H.Ishikawa: "Development of Genetic Range Genetic Algorithms(Case of Multi-objective Optimum Design)"Trans.of JSME(in Japanese). 68/686C. 2707-2713 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, M.Arakawa, R.Sasaki: "A Computational Intelligence Approach to Optimization with Unknown Objective Functions(Artificial Neural Networks -ICANN2001(Ed.G.Dorffner, H.Bischof and K.Hornik))"Springer. 73-80 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, T.Kotera, K.Miyazaki: "Rule-based Prediction with Additional Learning in Financial Problems(Knowledge-based Intelligent Information Engineering Systames & Allied Technologies(Ed.N.Baba, L.C.Jain and R.J.Hewlett))"IOS Press. 723-727 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, A.Hattori: "Active Forgetting in the Learning by RBF Networks(Knowledge-based Intelligent Information Engineering Systames & Allied Technologies(Ed.N.Baba, L.C.Jain and R.J.Hewlett))"IOS Press. 1488-1492 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, K.Washino: "Simulation-based Optimization using SVM and GA(Knowledge-based Intelligent Information Engineering Systames & Allied Technologies(Ed.N.Baba, L.C.Jain and R.J.Hewlett))"IOS Press. 466-470 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Yun, H.Nakayama, T.Tanino: "Dual Approach to Generalized Data Envelopment Analysis Based on Production Possibility(Multiple Objective and Goal Programming : Recent Developments(Ed.T.Trzaskalik and J.Michunik))"Physica-Verlag. 196-208 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama: "MOP/GP Approaches to Data Mining(Multi-objective Programming and Goal-Programming(Eds)T.Tanino, T.Tanaka and M.Inuiguchi))"Springer. 27-34 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Asada, H.Nakayama: "Support Vector Machines using Multi-objective Programming(Multi-objective Programming and Goal-Programming(Eds)T.Tanino, T.Tanaka and M.Inuiguchi))"Springer. 93-98 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, Y.Yun, T.Asada, M.Yoon: "Programming Approaches to Support Vector Machines(Knowledge-Bases Intelligent Information and Engineering Systems)((Eds.) V.Palade, R.J.Hewlett and L.Jain)"Springer. 356-363 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, A.Hattori: "Incremental Learning and Forgetting in RBF Networks and SVMs(Knowledge-Bases Intelligent Information and Engineering Systems)((Eds.) V.Palade, R.J.Hewlett and L.Jain)"Springer. 1109-1115 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakayama, M.Arakawa, K.Washino: "Optimization for Black-box Objective Functions(Optimization and Optimal Control)((eds.) P.M.Pardalos, I.Tseveendorj and R.Enkhbat)"World Scientific. 185-210 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi