• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Algebraic Cycles and Higher Abel-Jacobi map

Research Project

Project/Area Number 14340009
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionGraduate School of Mathematical Sciences, University of Tokyo (2004-2005)
Nagoya University (2002-2003)

Principal Investigator

SAITO Shuji  Graduate School of Mathematical Sciences, University of Tokyo, Graduate School of Mathematical Sciences, Professor (50153804)

Co-Investigator(Kenkyū-buntansha) SAITO Takeshi  University of Tokyo, Graduate School of Mathematical Sciences, Professor (70201506)
KATSURA Toshiyuki  University of Tokyo, Graduate School of Mathematical Sciences, Professor (40108444)
MIYAOKA Yoichi  University of Tokyo, Graduate School of Mathematical Sciences, Professor (50101077)
Project Period (FY) 2002 – 2005
Keywordsmotivic cohomology / finiteness conjecture / Kato conjecture / resolution of singularities
Research Abstract

Motivic cohomology is one of the most significant objects to study in arithmetic and algebraic geometry. For example, let K be a number field and O_K be its ring of integers. Then the ideal class group of K and the group of units in O_K are motivic cohomology of the scheme Spec(O_K).
An important conjecture in arithmetic geometry is finiteness of motivic cohomology of arithmetic schemes. This is a natural generalization of the finiteness result for the above examples, which is a fundamental fact in classical number theory. There have been very few results on the problem so far except the case of Spec(O_K) or a curve over a finite field.
In our research we have proved a new finiteness result for motivic cohomology. To state a result, let X be either regular projective flat over Spec(O_K) (arithmetic case) or a projective smooth variety over a finite field F (geometric case). The first crucial observation is that the finiteness of a certain motivic cohomology of X follows from a conjecture of Kato on the vanishing of KH_q(X) for integers q〓1. Here KH_q(X) is a certain arithmetic invariant attached to X. The Kato conjecture in case X=Spec(O_K) is equivalent to a fundamental fact in number theory concerning the Brauer group of K, which implies the Hasse principle for central simple algebras over K.
We have shown the Kato conjecture in geometric case under the assumption of resolution of singu-larities. To be more precise we have obtain the following:
Theorem Let X be a projective smooth variety over a finite field. Let γ〓1 be an integer. Assume resolution of singularities for subvarieties of dimension〓_K embedded in a smooth variety over F. Then KH_q(X)=0 for 1〓q〓γ+2.
We have also succeeded to show the resolution of singularities in the above sense in case γ=2. Thus we get KH_q(X)=0 for 1〓q〓4 unconditionally and it gives rise to a new finiteness result for motivic cohomology of X.

  • Research Products

    (14 results)

All 2006 2004 2003 2002 Other

All Journal Article (14 results)

  • [Journal Article] Noether-Lefschetz locus for Beilinson-Hodge cycles I2006

    • Author(s)
      M.Asakura, S.Saito
    • Journal Title

      Math. Zeit. 279

      Pages: 5-37

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Generalized Jacobian rings for open complete intersections2006

    • Author(s)
      M.Asakura, S.Saito
    • Journal Title

      Math.Nachr. 279

      Pages: 5-37

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Noether-Lefschetz locus for Beilinson-Hodge cycles I2006

    • Author(s)
      M.Asakura, S.Saito
    • Journal Title

      Math.Zeit. 279

      Pages: 5-37

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Beilinson's Hodge conjecture with coefficient for open complete intersections2006

    • Author(s)
      M.Asakura, S.Saito
    • Journal Title

      Mathematical Lecture Series of the London Mathematical Society (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Beilinson's Hodge and Tate conjectures2004

    • Author(s)
      S.Saito
    • Journal Title

      London Math. Society Lecture Note Series 313

      Pages: 276-289

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Beilinson's Hodge and Tate conjectures2004

    • Author(s)
      S.Saito
    • Journal Title

      London Math.Society Lecture Note Series 313

      Pages: 276-289

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Kato homology of arithmetic schemes and higher class field thenry over local fields2003

    • Author(s)
      U.Jannsen, S.Saito
    • Journal Title

      Documenta Math. Extra Volume : Kazuya Kato's Fiftieth Birthday

      Pages: 479-538

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On $K_1$ and $K_2$ of algebraic surfaces2003

    • Author(s)
      S.M\"uller-Stach, S.Saito
    • Journal Title

      $K$-Theory 30

      Pages: 37-69

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Kato homology of arithmetic schemes and higher class field theory over local fields2003

    • Author(s)
      U.Jannsen, S.Saito
    • Journal Title

      Documenta Math.Extra Volume : Kazuya Kato's Fiftieth Birthday

      Pages: 479-538

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On K_1 and K_2 of algebraic surfaces2003

    • Author(s)
      S.Muller-Stach, S.Saito
    • Journal Title

      K-Theory 30

      Pages: 37-69

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Higher normal functions and Griffiths groups2002

    • Author(s)
      S.Saito
    • Journal Title

      J.of Algebraic Geometry 11

      Pages: 161-201

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Infinitesimal logarithmic Torelli Problem for degenerating hypersurfaces in $\Bbb P^n$2002

    • Author(s)
      S.Saito
    • Journal Title

      Advanced Studies in Pure Math. 36

      Pages: 401-434

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Infinitesimal logarithmic Torelli problem for degenerating hypersurfaces in P^n2002

    • Author(s)
      S.Saito
    • Journal Title

      Advanced Studies in Pure Math. 36

      Pages: 401-434

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Beilinson's Hodge conjecture with coefficient for open complete intersections

    • Author(s)
      M.Asakura, S.Saito
    • Journal Title

      To appear in Math. Lecture Series of the London Math. Society

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2011-06-18  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi