• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Hecguard Splittings and genetic structures of 3-manifolds

Research Project

Project/Area Number 14340023
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

SAKUMA Makoto  Osaka University, Graduate school of Science, Associate Professor, 理学研究科, 助教授 (30178602)

Co-Investigator(Kenkyū-buntansha) AKIYOSHI Hirotaka  Osaka City Univ., Graduate school of Science, Associate Prof., 大学院・理学研究科, 特任助教授 (80397611)
WADA Masaki  Nara Women's Univ., Faculty of Science, Prof., 理学部, 教授 (80192821)
YAMASHITA Yasushi  Nara Women's Univ., Faculty of Science, Associate Prof., 理学部, 助教授 (70239987)
OHSHIKA Ken'ichi  Osaka Univ., Graduate school of Science, Prof., 理学研究科, 教授 (70183225)
KOBAYASHI Tsuyoshi  Nara Women's Univ., Faculty of Science, Prof., 理学部, 教授 (00186751)
Project Period (FY) 2002 – 2005
Keywordsquasi-fuchsian group / punctured torus / Hecguard Splittings / Ford domain / 2-bridge knot
Research Abstract

The main results obtained by this project are as follows.
1.Akiyoshi, Sakuma, Wada and Yamashita have completed a preprint (256 pages) which gives a full exposition of Jorgensen's theory for the Ford domains of quasifuchsian punctured torus groups, including a full proof. We plan to write a sequel of the paper to explain our extension of his theory to the outside of the quasifuchsian punctured torus space and to explain the relationship between the bridge structure of a 2-bridge knot and the complete hyperbolic structure of its complement.
2.Epstein-Penner has introduced the Euclidean decompositions of finite-volume cusped hyperbolic manifolds through a convex hull construction in the Minkowski space. Akiyoshi-Sakuma has generalized the construction to (possibly) infinite-volume cusped hyperbolic manifolds and introduced EPH-decompositions of these manifolds. Moreover, relation between the EPH-decompositions and the bending laminations of cusped hyper-bolic manifolds were studied by Akiyoshi-Sakuma-Wada Yamashita.
3.Akiyoshi-Miyachi-Sakuma have generalized Bowditch's variation of McShane's identity for hyperbolic punctured torus bundles to general hyperbolic punctured surface bundles.

  • Research Products

    (12 results)

All 2005 2004 2003 Other

All Journal Article (12 results)

  • [Journal Article] The continuity of convexcores with respect to the geometric topology2005

    • Author(s)
      K.Ohshika
    • Journal Title

      Comm. Anal. Geom 13

      Pages: 479-510

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The continuity of convex cores with respect to the geometric topology,2005

    • Author(s)
      OHSHIKA, Ken'ichi
    • Journal Title

      Comm.Ana., Geom. 13

      Pages: 479-510

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A refinement of McShane's identity for quanguchsian punctures tones groups2004

    • Author(s)
      M.Sakuma
    • Journal Title

      Contemp. Math, Amer. Math. Soc. 40

      Pages: 21-40

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A refinement of McShane's identity for quasifuchsian punctured torus groups,2004

    • Author(s)
      SAKUMA, Makoto
    • Journal Title

      Contemporary Math.A.M.S. 355

      Pages: 21-40

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Comparing two convex hull constructions for cusped hyperbolic mangles2003

    • Author(s)
      M.Sakuma
    • Journal Title

      London Math. Soc. Lect. Note Sei. 299

      Pages: 209-246

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Jorgensen's picture of punctured tones groups and its definement2003

    • Author(s)
      M.Sakuma
    • Journal Title

      London Math. Soc. Lect. Note Sei. 299

      Pages: 247-273

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Comparing two convex hull constructions for cusped hyperbolic manifolds,2003

    • Author(s)
      SAKUMA, Makoto
    • Journal Title

      London Math.Soc., Lecture Note Series. 299

      Pages: 209-246

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jorgensen's picture of quasifuchsian punctured torus groups,2003

    • Author(s)
      SAKUMA, Makoto
    • Journal Title

      London Math.Soc., Lecture Note Series. 299

      Pages: 247-273

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Variations of McShane's identity for punctured surface groups

    • Author(s)
      M.Sakuma
    • Journal Title

      London Math. Society, Lect. Note Series (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Teidineillerspace of once-punctures tori

    • Author(s)
      Y.Komori
    • Journal Title

      Experimental Mathematics (出版予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Variations of McShane's identity for punctured surface groups,

    • Author(s)
      SAKUMA, Makoto
    • Journal Title

      London Math.Soc., Lecture Note Series (In press)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Teichmuller spaces of once-punctured tori

    • Author(s)
      KOMORI, Yohei
    • Journal Title

      Experimental Math. (To appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi