• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

A bridge between complex analysis and operators on Hilbert spaces

Research Project

Project/Area Number 14340050
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

WATATANI Yasuo  Kyushu University, Faculty of Mathematics, Professor, 大学院・数理学研究院, 教授 (00175077)

Co-Investigator(Kenkyū-buntansha) KOSAKI Hideki  Kyushu University, Faculty of Mathematics, Professor, 大学院・数理学研究院, 教授 (20186612)
HAMACHI Toshihiro  Kyushu University, Faculty of Mathematics, Professor, 大学院・数理学研究院, 教授 (20037253)
MATSUI Taku  Kyushu University, Faculty of Mathematics, Professor, 大学院・数理学研究院, 教授 (50199733)
KAJIWARA Tsuyoshi  Okayama University, Department of Environmental and Mathematical Sciences, Professor, 大学院・環境学研究科, 教授 (50169447)
NAKAZI Takahiko  Hokkaido University, Department of Sciences, Professor, 大学院・理学研究科, 教授 (30002174)
Project Period (FY) 2002 – 2005
Keywordscomplex dynamical system / C^*-algebra / Julia set / Fractal set / Cuntz algebra / rational function / contraction / operator
Research Abstract

The aim of the research is to study a relation between complex dynamical systems and operators on Hilbert spaces. It is of fundamental interest in operator algebras to analyze interplay between a geometric or dynamical object and a C^*-algebra associated with it. For a branched covering, Deaconu and Muhly introduced a C^*-algebra associated with it using a r-discrete groupoid. A typical example of a branched covering is a rational function regarded as a self-map of the Riemann sphere. In order to capture information of the branched points for the complex dynamical system arising from a rational function R, we introduced a slightly different construction of a C^*-algebra O_R associated with R on the Julia set J_R. The C^*-algebra O_R is the Cuntz-Pimsner algebra of a Hilbert bimodule over the C^*-algebra C(J_R) of the set of continuous functions on J_R.
The main result of our research is the following : For any rational function of R, If the degree of R is at least two, then C^*-algebra O_R is simple and purely infinite. Similarly we study a C^*-algebra O_γ associated with a system γ of proper contractions on a self-similar set. We also obtain the following result : If the system γ satisfies the open set condition, then C^*-algebra O_γ is simple and purely infinite.

  • Research Products

    (12 results)

All 2005 2004 2003 2002 Other

All Journal Article (12 results)

  • [Journal Article] C^*-algebras associated with complex dynamical systems2005

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      Indiana Univ.Math.J. 54

      Pages: 755-778

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] C^*-algebras associated with complex dynamical systems,2005

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      Indiana Univ.Math.J. 54

      Pages: 755-778

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Relative positions of four subspaces in a Hilbert space and subfactors2004

    • Author(s)
      Y.Watatani
    • Journal Title

      ASPM 38

      Pages: 319-328

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Jones index theory for C^*-bimodules and its equivalence with conjugation theory2004

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Funct.Anal. 215

      Pages: 1-49

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Relative positions of four subspaces in a Hilbert spaces and subfactors2004

    • Author(s)
      Y.Watatani
    • Journal Title

      ASPM 38

      Pages: 319-328

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jones index theory for C^*-bimodules and its equivalence with conjugation theory,2004

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Funct.Anal. 215

      Pages: 1-49

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Means of Hilbert space operators2003

    • Author(s)
      F.Hiai, H.Kosaki
    • Journal Title

      Ledume Note in Math(springer) 1820

      Pages: 1-148

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Means of Hilbert space operators2003

    • Author(s)
      F.Hiai, H.Kosaki
    • Journal Title

      Lecture Note in Math.(Springer) 1820

      Pages: 1-148

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Hilbert C^*bimodules and continuous Cuntz-Krieger algebras2002

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Math.Soc.Japan 54

      Pages: 56-71

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Hilbert C^*-bimodules and continuous Cuntz Krieger algebras2002

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Math.Soc.Japan 54

      Pages: 56-71

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] C^*-algebras associated with self-similar sets

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Operator Theory (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] C^*-algebras associated with self-similar sets,

    • Author(s)
      T.Kajiwara, Y.Watatani
    • Journal Title

      J.Operator Theory (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi