• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Arithmetic of Cubic Fields and Elliptic Curves associated to them

Research Project

Project/Area Number 14540037
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

MIYAKE Katsuya  Tokyo Metropolitan University, Department of Mathematics, Professor, 理学研究科, 教授 (20023632)

Co-Investigator(Kenkyū-buntansha) NAKAMULA Ken  Tokyo Metropolitan University, Department of Mathematics, Professor, 理学研究科, 教授 (80110849)
KURIHARA Masato  Tokyo Metropolitan University, Department of Mathematics, Assoc. Professor, 理学研究科, 助教授 (40211221)
TOKUNAGA Hiroo  Tokyo Metropolitan University, Department of Mathematics, Assoc. Professor, 理学研究科, 助教授 (30211395)
MATSUNO Kazuo  Tokyo Metropolitan University, Department of Mathematics, Assist. Professor, 理学研究科, 助手 (40332936)
NAKANO Shin  Gakushuin University, Department of Mathematics, Assoc. Professor, 理学部, 助教授 (40180327)
Project Period (FY) 2002 – 2004
KeywordsCubic Field / Mordell Curve / Elliptic Curve / Cubic Generic Polynomial / Mordell-Weil Group / Mordell-Weil Rank / Elliptic Surface / Miranda-Persson's Problem
Research Abstract

For, an irreducible cubic polynomial P(X):=X^3+aX^2+bX+c over the rational number field Q, define a cubic curve E : w^3=P(u), and let E[Q] be the set of all rational points of E over Q (including the point at infinity; there are three points at infinity, and only one of them is rational over Q). Let ξ be a root of P(X), and define W(ξ):={α=qξ+r|q, r^∈Q, N_<Q(ξ)/Q>(α)=1}. Then we have a natural bijective map from W(ξ) to E[Q]. The subset W(ξ) of the cubic field Q(ξ) is stable under affine transformations of form ξ→sξ+t, s, t^∈Q, s≠0. By using such a transformation the curve is isomorphically mapped to one of two Mordell curves, y^2=x^3-2^43^3A^2, y^2=x^3-B^2(B+3), A, B^∈Q. The former is a short form of the pure cubic twist of the Fermat curve X^3+Y^3+AZ^3=0 as is well know. As for the latter, we showed that the Mordell-Weil rank is positive unless either B=-4 or -8/3. We could also obtain such a subfamily as the ranks of the members are at least 2 with a few exceptions. The subfamily was constructed by using the above presentation of E[Q] by W(ξ).
In case where P(X) is a generic cyclic polynomial of degree 3, namely, P(X)=X^3-(s-3)X^2-sX-1, the short form is determined. In this cyclic case, W(ξ) allowed us to construct an elliptic curve by using Hilbert's theorem 90. An isomorphism between the two curves over Q was also obtained.
In this project we deal with families of elliptic curves with one parameter in arithmetic viewpoint. It is also natural to see them as elliptic surfaces and to handle them in the way of algebraic geometry. It may be noteworthy that one of the investigator H. Tokunaga could solve Miranda-Persson's problem on the Mordell-Weil group of an extremal elliptic K3 surface.

  • Research Products

    (17 results)

All 2005 2004 2003 2002 Other

All Journal Article (16 results) Book (1 results)

  • [Journal Article] An Introduction to Elliptic Curves and their Diophantine Geometry -- Mordell Curves --2005

    • Author(s)
      Katsuya Miyake
    • Journal Title

      Annales des Sciences Mathematiques du Quebec To appear

      Pages: 173-185

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Dihedral covers and an elementary arithmetic on elliptic surfaces2004

    • Author(s)
      Hiroo Tokunaga
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 255-270

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Dihedral covers and an elementary arithmetic on elliptic surfaces J. Math2004

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      Kyoto Univ. 44

      Pages: 255-270

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Zariski k-plets of rational curve arrangements and dihedral covers (with E. Artal Bartolo)2004

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      Topology Appl. 142(To appear)

      Pages: 227-233

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Some Families of Mordell Curves associated to Cubic Fields2003

    • Author(s)
      Katsuya Miyake
    • Journal Title

      Jour. of Computational and Applied Math. 160

      Pages: 217-231

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Z_p-extensions2003

    • Author(s)
      Kazuo Matsuno
    • Journal Title

      Proc.Japan Acad. 79 Ser.A

      Pages: 101-104

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Some Families of Mordell Curves associated to Cubic Fields.2003

    • Author(s)
      Miyake, Katsuya
    • Journal Title

      Jour. of Computational and Applied Math. 160

      Pages: 217-231

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic Zp-extensions2003

    • Author(s)
      Matsuno, Kazuo
    • Journal Title

      J. Number Theory 99

      Pages: 415-443

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Zp-extensions2003

    • Author(s)
      Matsuno, Kazuo
    • Journal Title

      Proc. Japan Acad. 79 Ser. A

      Pages: 101-104

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Miranda Persson's problem on extremal elliptic K3 surfaces (with E.Artal Bartolo and D.-Q.Zhang)2002

    • Author(s)
      Hiroo Tokunaga
    • Journal Title

      Pacific J. of Math. 202

      Pages: 37-72

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Miranda-Persson's problem on extremal elliptic K3 surfaces (with E. Artal Bartolo and D.-Q. Zhang).2002

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      Pacific J. of Math. 202

      Pages: 37-72

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 2-dimensional versal S_4-covers and rational elliptic surfaces

    • Author(s)
      Hiroo Tokunaga
    • Journal Title

      Seminaire et Congres, Societe Mathematique de France To appear

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An Introduction to Elliptic Curves and their Diophantine Geometry-Mordell Curves-

    • Author(s)
      Miyake, Katsuya
    • Journal Title

      Annales des Sciences Mathematiques du Quebec (To appear)

      Pages: 14

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 2-dimensional versal S_4-covers and rational elliptic surfaces

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      Seminaire et Congres, Societe Mathematique de France (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Note on a 2-dimensional versal D8-cover

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      Osaka Math. J. (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Nodal Degenerations of Plane Curves and Galois Covers (with E. Bartolo and J. Cogollundo)

    • Author(s)
      Tokunaga, Hiroo
    • Journal Title

      (Preprint)

      Pages: 16

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Galois Theory and Modular Forms (co-edit. with Ki-ichiro Hashimoto and Hiroaki Nakamura)2004

    • Author(s)
      Katsuya Miyake
    • Total Pages
      393
    • Publisher
      Kluwer Acad.Publ.
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi