2003 Fiscal Year Annual Research Report
単純楕円型特異点と附随する周期写像のLie環論的構成
Project/Area Number |
14540054
|
Research Institution | Kitami Institute of Technology |
Principal Investigator |
山田 浩嗣 北見工業大学, 工学部, 教授 (50210472)
|
Co-Investigator(Kenkyū-buntansha) |
庵原 謙治 神戸大学, 理学部, 助手 (00322199)
渡辺 文彦 北見工業大学, 工学部, 助教授 (20274433)
鈴木 範男 北見工業大学, 工学部, 助教授 (80211986)
|
Keywords | 楕円型Lie環 / 楕円型Weyl群 / 楕円曲線 / Atiyah-Bott point / Painleve方程式 / 単純楕円型特異点 |
Research Abstract |
山田-庵原-寺島は、中心拡大が2-次元である楕円型リー環の商環から出発し、自然にSL(2,Z)、楕円型Weyl群が作用する空間Pを構成した。この空間は、g(E)を楕円曲線E上のG-値の関数全体の成す無限次元Lie環とする時,g(E)上のC^*-バンドルに同型である。さて,この空間には、doubleループ群が作用し、それに関する随伴軌道が、正則ループ群の中心拡大の共役類と1:1に対応している。即ち、Slodowy-helmkeの理論に従えば、空間Pを用いて単純楕円特異点が構成できるはずである。ところが、特異点は不安定正則ベクトルバンドルに対応しており、この事を接続の言葉で表さなければならない。Loop群に於いては、Atiyah-Bott pointの言葉で表現できる事は解っているが、楕円型Lie環の言葉ではまだ解っていない。 さて、上記で構成したSL(2,Z)、楕円型Weyl群の作用をCartan部分群に制限すると、Maninn, Levin達がPainleve方程式の研究で用いた作用に一致する事が解った。この事は、楕円型単純特異点とPainleve方程式との何らかの関係を示唆しており、今後の研究テーマである。
|