• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Dynamics of modular groups on infinite dimensional Teichmuller spaces

Research Project

Project/Area Number 14540156
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOchanomizu University

Principal Investigator

MATSUZAKI Katsuhiko  Ochanomizu Univ., Faculty of Science, Associate Prof., 理学部, 助教授 (80222298)

Co-Investigator(Kenkyū-buntansha) SUGAWA Toshiyuki  Hiroshima Univ., Grad.School of Science, Associate Prof., 大学院・理学研究科, 助教授 (30235858)
Project Period (FY) 2002 – 2003
KeywordsTeichmuller space / modular group / Riemann surface / quasiconformal map / hyperbolic geometry / Schwarzian derivative / Bers embedding / univalent function
Research Abstract

Teichmueller spaces are not homogeneous spaces and their mudular groups do not act transitively. For compact Riemann surfaces, modular groups act discontinuously, but this is not the case for infinite dimensional Teichmueller spaces. We study the moduli spaces of Riemann surafces of infinite type by considering the chaotic behavior of the action of modular groups. For a viewpoint of general topology, the moduli space is either metrizable or not of the first separation axiom. However, except for a singular part, it can possess a certain geometric structure. In this research, we characterize this stable region by hyperbolic geometric structure of a Riemann surface and construct a contracted moduli space by the completion of the stable region. Consequently, we can describe the closure of a point set in terms of the geomery of Riemann surfaces, which is a point of teh contracted module space.
We considered the space of pre-Schwarzian derivatives of univalent functions on the unit disk which extends to quasiconformal mappings of the extended plane in order to investigate the relation between connected components of the pre-Schwarzian derivatives of univalent functions on the unit disk which extends to quasiconformal mappings of the extended plane in order to investigate the relation between connected components of the pre-Schwarzian model of the universal Teichmueller space and classical families of univalent functions. We also investigated geometric properties of univalent functions with a prescribed growth of the Schwarzian derivative and found that they are starlike or convex according to the distance to the origin in the Bers embedding of the universal Teichmueller space.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] K.Matsuzaki: "The infinite direct product of Dehntwists acting on infinite dimensional Teichmuller spaces."Kodai Math.J.. 26. 279-287 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsuzaki: "Inclusion relations between the Bers embeddings of Teichmuller spaces"Israel J.Math.. 140. 113-124 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsuzaki: "A countable Teichmuller modular group"Trans.Amer.Math.Soc.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sugawa: "A remark on the Ahlfors-Lehto univalence criterion"Ann.Acad.Sci.Fenn.. 27. 151-161 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Sugawa: "Estimates of hyperbolic metric with applications to Teichmuller spaces"Kyungpook Math.J.. 42. 51-60 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Komori, T.Sugawa: "Bers embedding of the Teichmuller space of a once-punctured tours"Conform.Geom.Dyn.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matauzaki: "The infinite direct product of Dehn twists acting on infinite dimensional Teichmuller spaces"Kodai Math. J.. 26. 279-287 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Matauzaki: "Inclusion relations between the Bers embeddings of Teichmuller spaces"Israel J.Math.. 140. 113-124 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Matauzaki: "A countable Teichmuller modular group"(in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sugawa: "A remark on the Ahlfors-Lehto univalence criterion"Ann.Acad.Sci.Fenn.. 27. 151-161 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sugawa: "Estimates of hyperbolic metric with applications to Teichmuller spaces"Kyungpook Math.J.. 42. 51-60 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Komori, T.Sugawa: "Bers embedding of the Teichmuller space of a once-punctured torus"(in press).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi