• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Study of integral operators on function spaces.

Research Project

Project/Area Number 14540168
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionGifu University

Principal Investigator

YAMADA Masahiro  Gifu University, Education, Mathematics, professor, 教育学部, 助教授 (00263666)

Co-Investigator(Kenkyū-buntansha) ISHIWATA Tetsuya  Gifu University, Education, Mathematics, Assistant professor, 教育学部, 助教授 (50334917)
AIKI Toyohiko  Gifu University, Education, Mathematics, Assistant professor, 教育学部, 助教授 (90231745)
TAKUCHI Sigeru  Gifu University, Education, Mathematics, professor, 教育学部, 教授 (30021330)
YONEDA Rikio  Aichi University of Education, Education, Mathematics, Assistant, 教育学部, 助手 (70342475)
SHIMOMURA Tetsu  Hiroshima University, Education, Mathematics, Assistant professor, 教育学部, 助教授 (50294476)
Project Period (FY) 2002 – 2003
KeywordsBerman space / integral operator / Carleson inequality / Toeplitz operator
Research Abstract

We study boudedness of Toeplitz operators. Let $H$ be the upper half-space of the $n$-dimensional Euclidean space. For $O<p<\infty$, let $b^{p}=b^{p}(H,dV)$ be the class of aliharmonic functions $u$ on $H$. The class $b^{p}$ is called the harmonic Bergman space. We show the following results. Suppose that $\mu$ is a $\sigma$-finite positive Borel measure on $H$, $d\nu=\omega dV$ and $\omega$ satisfies the $(A_{q})_{\partial}$-condition for some $1<q<\infty$. There is a constant $C>0$ such that $$ \int_{H} |D^{\alpha}u|^{p} d \mu \le C\int {H}|D^{m}_{y}u|^{p} d\nu $$ for all $u \in b^{p}$ and multi-indices $\alpha$ of order $\ell$ if andonly if There are constants $K>O$ and $0<\varepsilon<1$ such that $\mu(S(w)) \le K t^{(\Yell-m)p}\nu(D_{\varepsilon}(w))$for all $w=(s,t) \in H$. Moreover, let $\mu$ be a $\sigma$-finite positive Borel measure on $\mathbb{R}^{n+1}_{+}$, $\mathbb{N} {0}=\inathbb{N} \cup \{0 Y}$ and $\mathbb{N}^{n}_{O}=\mathbb{N} {0} \times \cdots \times \mathbb{N} [O}$ ($ … More n$ factors). For a multi-index $\gamnma \in \mathbb{N}^{n}_{01$, $\partia;^{\gamma}_{x}$ denotes the differential monomial $\partialil^{|\gamma|}/\partiali^|gamma_{1}_{x_{1}}\dots \partial^{\gamma_{n}}_{x_{n}}$ and let $\partial_{t}=\partial/\partial_{t}$. We consider conditions for $\mu$ in order that there exists a constant $C>0$ such that $$\int_{\mathbb{R}^{n+1}_{+}}| \partial^{\gamma}_{x} \partial^{\ell}_{t} u|^{p}^-d \mu \le C \int {\mathbb{R}^{n+1}_{+}t^{\lambda}|\partial^{m}_{t} u|^{p}^-dV$$ for all $u \in b^{p}_{\alpha}$, where $\ell,m \in \mathbb{N}_{0}$, and $\lambda \in \mathbb{R}$. Let $D$ be the open unit disk in the complex plane and $H^{p}$ be the classical Hardy spaces on $D$. Carleson proved that a finite positive Borel measure $\mu$ on $D$ satisfies $\int_{D}|f|^{p}d \inu \le C \parallel f \parallel^{p}_{H}^p}} $ for all $f \in H^{p}$ if and only if there exists a constant $K>0$ with $\mu(S(I)) \le K |I|$ for any interval $I \subset \partial D$, where $S(I)$ is the corresponding Carleson square over $I$. We stud y conditions for $\mu$ satisfying such inequalities for parabolic Bergman functions on the upper half space. Less

  • Research Products

    (36 results)

All Other

All Publications (36 results)

  • [Publications] Yamada, Masahiro: "Carleson inequalities in weighted harmonic Bergman spaces, 0<p<1"京都大学数理解析研究所講究録「調和・解析関数と線形作用素II」. 1277. 22-29 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamada, Masahiro: "Inequalities on derivatives of harmonic Bergman functions"Scientiae Mathematicae Japonicae Online. Vol.9. 111-118 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Aiki, Toyohiko: "Uniqueness for multi-dimensional Stefan problems with nonlinear boundary conditions described by maximal monotone operators"Differential and Integral Equations. Vol.15. 973-1008 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "On one-phase Stefan problems for sublinear heat equations"Proceedings of the Third Asian Mathematical Conference 2000. 6-11 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "Well-posedness of one-phase Stefan problems for sublinear heat equations"Journal of Nonlinear Analysis. 51. 587-606 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Aiki, Toyohiko, Kenmochi, Nobuyuki: "Models for shape memory alloys described by subdifferentials of indicator functions"Elliptic and Parabolic Problems, Rolduc and Gaeta 2001. 1-10 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Aiki, Toyohiko: "One-dimensional shape memory alloy problems including a hysteresis operator"Funkcialaj Ekvaccioj. Vol.46. 441-469 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ishiwata Testuya, Yazaki Shigetoshi: "On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion"Journal of Computational and Applied Mathematics. 159. 55-64 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石渡 哲哉, 長山 雅晴, 池田 勉, 大柳 満之: "燃焼合成反応への数理的アプローチ"京都大学数理解析研究所講究録「発展方程式の展開と非線型問題への接近法」. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ishiwata Testuya, Yazaki Shigetoshi: "Asymptotic behavior of solutions to some anisotropic crystalline curvature flow"Proceedings of the 12th Tokyo Conference on Nonlinear PDE. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石渡 哲哉, 矢崎 成俊: "The notes on a fast blow-up solution arising in an anisotropic crystalline motion(結晶界面運動に現れる速い縮退解について)"京都大学数理解析研究所講究録「非線形現象の解析:実験と数理解析」. 1313. 86-98 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Tetsu: "Continuity and differentiability for weighted Sobolev spaces"Proc.Amer.Math.Soc.. 130. 2985-2994 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Futamura, Toshihide, Mizuta, Yoshihiro, Shimomura, Testu: "Lindel\"{o}f type theorems for monotone Sobolev functions on half spaces"京都大学数理解析研究所講究録. 1293. 18-26 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Riesz decomposition and limits at infinity for $p$-precise on a half space"京都大学数理解析研究所講究録. 1293. 98-109 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Minimally fine limits at infinity for $p$-precise functions"J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Growth properties for modified Poisson integrals in a half space"Pacific J.Math. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "On semi-fine limits at infinity for Riesz potentials and monotone BLD functions"Potential Analysis. 19. 365-381 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yamada, Masahiro: "Carleson inequalities in weighted harmonic Bergman spaces, 0<p<1"Research Institute for Mathematical Science Kyoto university. vol.1277. 22-29 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yamada, Masahiro: "Inequalities on derivatives of harmonic Bergman functions"Scientiae Mathematicae Japonicae online. vol.9. 111-118 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nishio, Masaharu, Yamada, Masahiro: "Carleson type measures on parabolic Bergman spaces"(preprint).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Aiki, Toyohiko: "Uniqueness for multi-dimensional Stefan problems with nonlinearboundary condition described by maximal monotone operators"Differential and Integral Equations. vol.15. 973-1008 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "On one-phase Stefan problems for sublinear heat equations"Proceedings of the Third Asian Mathematical Conference 2000. 6-11 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Aiki, Toyohiko, Imai, Hitoshi, Ishimura, Naoyuki, Yamada, Yoshio: "Well-posedness of one-phase Stefan problems for sublinear heat equations"Journal of Nonlinear Analysis. vol.51. 587-606 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Aiki, Toyohiko, Kenmochi, Nobuyuki: "Models 1, for shape memory alloys described by subdifferentials of indicator functions"Elliptic and Parabolic Problems, Rolduc and Gaeta 2001-10. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Aiki, Toyohiko: "One-dimensional shape memory alloy problems including a hysteresis operator"Funkcialaj Ekvaccioj. Vol.46. 441-469 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishiwata, Testuya, Yazaki, Shigetoshi: "On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion"Journal of Computational and Applied Mathematics. Vol.159. 55-64 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishiwata, Testuya, Nagayama, Masaharu, Ikeda, Stutomu, Yanagi, Mistuyuki: "A Mathematical approach for reactions of combustion omposition"Research Institute for Mathematical Sciences Kyoto University. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishiwata, Testuya, Yazaki, Shigetoshi: "Asymptotic behavior of solutions to some anisotropic crystalline curvature flow"Proceedings of the 12th Tokyo Conference on Nonlinear PDE. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishiwata, Testuya, Yazaki, Shigetoshi: "The notes on a fast blow-up solution arising in an anisotropic crystalline motion"Research Institute for Mathematical Sciences Kyoto University. vol.1313. 86-98 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ishiwata, Testuya, Yazaki, Shigetoshi: "A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion"(submitted).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Continuity and differentiability for weighted Sobolev spaces"Proc.Amer.Math.Soc.. vol.130. 2985-2994 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Futamura, Toshihide, Mizuta, Shimomura, Testu: "Lindel\{o}f type theorems For monotone Sobolev functions on half spaces"Research Institute for Mathematical Sciences Kyoto University. vol.1293. 18-26 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Riesz decomposition and limits at infinity For $p$-precise on a half space"Research Institute for Mathematical Sciences Kyoto University. vol.1293. 98-109 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Minimally fine limits atinfinity for $p$-precice functions"J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "Growth properties for modified Poisson Integrals in a half space"Pacific J.Math. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mizuta, Yoshihiro, Shimomura, Testu: "On semi-fine limits atinfinity for Riesz Potentials and monotone BLD functions"Potential Analysis. vol.19. 365-381 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi