Research Abstract |
1.The effects of naloxonazine, a mu(1)-opioid receptor antagonist, and physostigmine, a cholinesterase inhibitor, on the endomorphins-induced impairment of passive avoidance learning were investigated in mice. Endomorphin-1(10 microg) and endomorphin-2(10 microg) significantly impaired passive avoidance learning, while naloxonazine (35 mg/kg, s.c.), a mu(1)-opioid receptor antagonist, which alone failed to influence passive avoidance learning significantly inhibited the endomorphin-1(10 microg)- but not endomorphin-2(10 microg)-induced disturbance of such learning. A rather nonselective higher dose (50 mg/kg, s.c.) of naloxonazine almost completely antagonized the endomorphin-1(10 microg)- and endomorphin-2(10 microg)-induced impairment of passive avoidance learning. In contrast, physostigmine (0.025 and 0.05 mg/kg, i.p.) significantly reversed the endomorphin-1(10 microg)- and endomorphin-2(10 microg)-induced disturbance of passive avoidance learning, whereas physostigmine (0.025 and 0.05 mg/kg, i.p.) alone did not influence such learning. These results suggest that endomorphin-1 but not endomorphin-2 impairs learning and memory resulting from cholinergic dysfunction, and from activation of mu(1)-opioid receptors. 2.We investigated the effects of U-50,488H, a kappa-opioid receptor agonist, on the learned helplessness model of depression in mice. Mice pre-exposed to inescapable electric footshock were treated with U-50,488H. Stimulation of the kappa-opioid receptor by U-50,488H (10 mg/kg/day, i.p.) attenuated the escape failure induced by pre-exposure to shock. This attenuation by U-50,488H was blocked by MR2266 (10 mg/kg/day, s.c.), an opioid receptor antagonist. These results suggest that the kappa-opioid system plays an important role in the learned helplessness depression in mice.
|