2004 Fiscal Year Annual Research Report
Project/Area Number |
14702001
|
Research Institution | Hokkaido University |
Principal Investigator |
利根川 吉廣 北海道大学, 大学院・理学研究科, 助教授 (80296748)
|
Keywords | 変分問題 / 非線形偏微分方程式 / 相分離 / 幾何学的測度論 / 非等方的 / 極小曲面 / 粘性解 |
Research Abstract |
平成16年度は(1)等方的な表面張力がその分離の主原因となっているvan del Waals 2相分離モデルにおいて、表面エネルギーの有界性と化学ポテンシャルに対応する量のソボレフノルムの有界性を仮定し、界面領域の厚みを0に近づけたときの極限界面について新しい結果を得た.同様な方向で2002年に得た結果では部分的なソボレフノルム有界下での結果が得られたが、今年度の結果で完全にシャープな結果を得た(論文準備中).この結果を示すにあたっては新しいregularizationの技術を用いたのであるが、他の現在懸案となっている関連問題への突破口となる結果であり、現在精査中である.(2)確率論の大偏差原理に動機付けられた、安定相間の遷移確率を決定する汎関数、Allen-Cahn Action(ACA)の特異極限問題についてReznikoffは各種のスケーリング則を得たが、特に空間的な非一様性が得られるスケーリングにおいてはACAの上からの評価を得ていた.一方、下からの評価についてのシャープな結果を共同研究で得ることが出来た(Kohn, Reznikoffとの共著論文を投稿中).この結果は空間1次元の結果であるが、(1)の結果を用いる事で各種の2、3次元の結果が得られることが期待される.(3)Penn State大学のLiu氏によって問題提起された非圧縮性流体移流効果のある場合の平均曲率流弱解構成への幾何学的測度論の応用に関して引き続き研究成果があった。
|
Research Products
(1 results)