• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Annual Research Report

有限単純群と符号・格子・頂点作用素代数

Research Project

Project/Area Number 15340002
Research InstitutionChiba University

Principal Investigator

北詰 正顕  千葉大学, 理学部, 教授 (60204898)

Co-Investigator(Kenkyū-buntansha) 越谷 重夫  千葉大学, 理学部, 教授 (30125926)
野澤 宗平  千葉大学, 理学部, 教授 (20092083)
杉山 健一  千葉大学, 理学部, 助教授 (90206441)
原田 昌晃  山形大学, 理学部, 助教授 (90292408)
千吉良 直紀  室蘭工業大学, 工学部, 助教授 (40292073)
Keywords有限群 / 単純群 / 散在型単純群 / グラフ / 符号 / 格子 / デザイン / 頂点作用素代数
Research Abstract

研究課題に関して,今年度は以下のような研究成果を得た。
1.可移置換群の作用により不変な自己直交符号について,一般的な探索・構成の原理を与えた。その応用として,いくつかの散在型単純群に対する実例を計算した。ここには,昨年度に発見されたHall-Janko群が作用する自己双対符号を含んでいると共に,22次のMathieu群が作用する長さ330の自己双対符号が新たに発見された。これについては,原田・千吉良との共著論文として投稿済みである。
2.affine polar graphから得られる長さ64の自己双対符号から始めて,次々とneighborを取るという方法により,いくつかの新しいパラメータの符号を構成した。この件は,現在進行中の考察であるが,すでにいくつかの観点で興味深いものが得られており,原田・千吉良との共著論文として発表の準備中である。また,別の長さの場合への応用などを模索中であり,次年度への課題の一つであると考えている。
3.大学院生の堀口直之(千葉大学),中空大幸(岡山大学)の研究協力を得て進行していた,Hall-Janko graphと10次のWitt systemとの関連についての研究は,Witt systemからのグラフの再構成に加え,4元体上のhexacodeの言葉を用いた再構成を与えるという形で,一応の完成を見た。これについては,3人の共著論文としてまとめているところである。
4.海外共同研究者のC.H.Lam氏とは,頂点作用素代数(特にMoonshine VOA)に関連する符号について討議した。現時点では,最終的な結果を得るには至っておらず,次年度への課題としたい。

  • Research Products

    (1 results)

All 2005

All Journal Article (1 results)

  • [Journal Article] On some self-dual codes and unimodular lattices in dimension 482005

    • Author(s)
      M.Harada, M.Kitazume, A.Munemasa, B.Venkov
    • Journal Title

      European Journal of Combinatorics 26

      Pages: 543-557

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2007-04-02   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi