• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Complex symplectic varieties and derived categories

Research Project

Project/Area Number 15340008
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University (2005)
Kyoto University (2003-2004)

Principal Investigator

NAMIKAWA Yoshinori  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80228080)

Co-Investigator(Kenkyū-buntansha) FUJIKI Akira  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80027383)
GOTO Ryushi  Osaka University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30252571)
USUI Sampei  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90117002)
OHNO Koji  Osaka University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (20252570)
SATAKE Ikuo  Osaka University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (80243161)
Project Period (FY) 2003 – 2005
Keywordsderived categories / complex symplectic variety / deformation / Mukai flop / nilpotent orbit / birational geometry
Research Abstract

1. Mukai flops : (a) We proved that there is an equivalence between derived categories under a Mukai flop. The equivalence is not obtained from the graph of the flop, but from the fiber product. But the same picture is no more true for a G(2,4) flop ; in other words, the functor obtained from the graph of the fiber product is not an equivalence. (b) The nilpotent orbit closure of Complex a simple Lie algebra is a symplectic singularity. All crepant resolutions of such singularities are obtained as the Springer resolutions. In general, the member of crepant resolutions of a singularity is greater than one. We proved that crepant resolutions of such a nilpotent orbit closure are described as a finite sequence of Mukai flops of type A, D and E_6.
2. Deformations of singular symplectic varieties. We proved that, model the minimal under conjecture, the following are equivalent.
(1) a projective symplectic variety Y has a crepant resolutions
(2) a projective symplectic variety Y has a smoothing by a deformations

  • Research Products

    (10 results)

All 2004 2003 Other

All Journal Article (10 results)

  • [Journal Article] Mukai flops an derived categories II2004

    • Author(s)
      並河 良典
    • Journal Title

      CRM Proc.Series, AMS 38

      Pages: 149-175

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Uniqueness of crepant resolutions, and symplectic singularities2004

    • Author(s)
      並河 良典, B.Fu
    • Journal Title

      Ann.Inst. Fourier 54

      Pages: 1-19

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Mukai flops and derived categories II2004

    • Author(s)
      Y.Namikawa
    • Journal Title

      CRM Proc.Series, AMS 38

      Pages: 149-175

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Uniqueness of crepant resolutions and symplectic varieties2004

    • Author(s)
      B.Fu, Y.Namikawa
    • Journal Title

      Ann.Inst.Fourier 54

      Pages: 1-19

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Mukai flops and derived categories2003

    • Author(s)
      並河 良典
    • Journal Title

      J.Reine Angew.Math. 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Mukai flops and derived categories2003

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.Reine Angew.Math. 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On deformation of Q-factorial symplectic varieties

    • Author(s)
      並河 良典
    • Journal Title

      J.Reine Amgew.Math. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Birational geometry of symplectic reductions of nilpotent orbits

    • Author(s)
      並河 良典
    • Journal Title

      Advanced Studies in Pure Math. 43(to appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On deformations of Q-factorial symplectic varieties

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.Reine Angew.Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Birational geometry of symplectic resolutions of nilpotent orbits

    • Author(s)
      Y.Namikawa
    • Journal Title

      Adv.Stud.in. Pure Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi