2004 Fiscal Year Final Research Report Summary
Study on the distances and arrangement of finite-point-set
Project/Area Number |
15540131
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | University of the Ryukyus |
Principal Investigator |
MAEHARA Hiroshi University of the Ryukyus, Faculty of Education, Professor, 教育学部, 教授 (60044921)
|
Project Period (FY) |
2003 – 2004
|
Keywords | integral-distance graph / rational-distance graph / minimal star / hemi-metric / super-bound |
Research Abstract |
1.Let G be the graph obtained from a complete graph with countably many vertices by removing an edge. Then G is not an integral-distance graph in any dimension, but it is a rational distance graph in the plane. If a complete graph with n vertices can be realized as an integral distance graph in the plane in such a way that no three vertices lie on a line, and no four vertices lie on a circle, then the complete n-partite graph K(a_1,a_2,【triple bond】,a_n) is a rational distance graph in the plane, where a_k=(k-1 choose 2)+(k-1 choose 3)+1. 2.For any n>4, and any k>1, there is an n-point-set such that the center of the minimal star of the n-point-set in p-norm (p=1,2,【triple bond】,k) are all distinct. But for any 4-point-set the center of the minimal star are the same point for any norm. (Joint work with M.Watanabe). 3.Let X be a point-set with at least m+2 points. The map from the family of m+1 point-set of X to the nonnegative reals that assigns to each (m+1)-point-set, the m-dimensional volume of the convex hull of the (m+1)-point-set, is a hemimetric and satisfies the m-dimensional simplex inequality. For each m, we can define the "bound" s(m) of m-dimensional simplex inequality. This bound s(m) determines the "configuration" X to some extent. For example, if |X|>4, then the three statements s(2)=2,s(3)=3, and [X is the vertex-set of a regular simplex] are equivalent. We calculated s(m) for regular polyhedra in 3-space. Though s(m)=3 for the n-dimensional cross-polytope, n>m-1>1, the value s(m) for n-cube tends to 1 as n tends to infinity. (Joint work with M.Deza and M.Dutour).
|
Research Products
(13 results)