• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Self-Organizing Motion Primitives for Robots Utilizing Deep Learning

Research Project

  • PDF
Project/Area Number 15H01710
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent robotics
Research InstitutionWaseda University

Principal Investigator

Ogata Tetsuya  早稲田大学, 理工学術院, 教授 (00318768)

Co-Investigator(Kenkyū-buntansha) 有江 浩明  早稲田大学, 次世代ロボット研究機構, その他(招聘研究員) (20424814)
Project Period (FY) 2015-04-01 – 2020-03-31
Keywords深層学習 / 予測学習 / マルチモーダル / 動作プリミティブ / RTミドルウェア
Outline of Final Research Achievements

In recent years, deep learning has been used in a variety of domains, but its application is limited to cyber data processing. It is not sufficiently easy to work in the real world. On the other hand, there is a strong expectation for life support using robots. In recent years, the possibility of general-purpose robots has been attracting attention. In this study, we have developed a novel robot learning model using deep learning. Also we have improved the robot performance for manipulating various materials and reduced the development cost with robot operation system, RT-Middleware.
Specifically, based on the findings of cognitive developmental robotics research which relates to infant developmental learning including imitation learning, predictive coding, etc. we developed multiple robots which are modeling the sensory-motor information (experience) by deep learning.

Free Research Field

知能ロボティクス,認知発達ロボティクス

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は「手離れ」がよく,その後,多様な企業との共同研究に展開している.
例えば,デンソーウェーブ,ベッコフオートメーション,そして研究代表者が技術顧問を務めるエクサウィザーズが開発した「マルチモーダルAIロボット」は,タオルの折畳み,サラダの盛り付けなどを実現している(2017).また日立製作所では,ドアへの接近,ドア開け,通り抜けという全身動作を,複数の深層学習モデルを用いて学習することに成功した(2018).デンソーウェーブとエクサウィザーズは,小型ロボットCOBOTTAを利用した粉体秤量を実現した(2018).
今後,このような多くのロボット応用に発展していくことが期待される.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi