2018 Fiscal Year Final Research Report
Research and Development of Helium and Proton Hybrid Beam Therapy
Project/Area Number |
15H04768
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Medical Physics and Radiological Technology
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
高尾 聖心 北海道大学, 大学病院, 助教 (10614216)
梅垣 菊男 北海道大学, 工学研究院, 教授 (40643193)
清水 伸一 北海道大学, 医学研究院, 教授 (50463724)
鬼丸 力也 北海道大学, 医学研究院, 准教授 (80374461)
松浦 妙子 北海道大学, 工学研究院, 准教授 (90590266)
牧永 綾乃 帝京大学, 公私立大学の部局等, 講師 (40571948)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 医学物理 / 動体追跡放射線治療 / 画像誘導放射線治療 / ヘリウム線治療 / 陽子線治療 / NTCP |
Outline of Final Research Achievements |
The carbon beam therapy requires huge accelerator and very expensive. Proton beam therapy system has gantry, image-guidance, and const-effective but less sharpness of the beam at the shallow area. We built a concept and requirement to build a new generation particle beam therapy system which has rotating gantry, real-time tumour-tracking image guidance in the deep part of the body, and sharp beam-edge at the shallow part of the body. Hybrid Helium and proton beams can be used for the same patient by our development with the size of synchrotron similar to the proton beam therapy system. We also developed a new in-silico biomarker to select the optimal particle beam therapy for each patient using normal tissue complication probability (NTCP) model with the confidence interval. We will be able to predict which particle beam therapy is the best choice for the patient using the difference of NTCP, ΔNTCP, between two options of radiotherapy with a statistical significance level.
|
Free Research Field |
医学物理学、放射線技術学
|
Academic Significance and Societal Importance of the Research Achievements |
がんの治療に重要な役割を果たしつつある小型動体追跡ガントリー式陽子線治療と、浅い部分のビームがシャープな重粒子線治療(炭素線)の良い点を取り入れて、重粒子線治療装置よりもコストを抑えた治療装置である、ヘリウム・陽子線ハイブリッド治療装置の研究開発を行った。さらに、ΔNTCPという指標により、個々の患者に最適な放射線治療の選択を可能とする、統計学的な信頼度を持つインシリコ・バイオマーカーの開発を行った。
|