• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Formation of Self-Aligned Super-Atom-like Si-Ge based Quantum Dots and Characterization of Their Optical and Electrical Properties

Research Project

  • PDF
Project/Area Number 15H05762
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Electronic materials/Electric materials
Research InstitutionNagoya University

Principal Investigator

Seiichi Miyazaki  名古屋大学, 工学研究科, 教授 (70190759)

Co-Investigator(Kenkyū-buntansha) 牧原 克典  名古屋大学, 工学研究科, 准教授 (90553561)
大田 晃生  名古屋大学, 工学研究科, 助教 (10553620)
Research Collaborator IKEDA Mitsuhisa  
Project Period (FY) 2015-05-29 – 2019-03-31
KeywordsSi系量子ドット / スーパーアトム
Outline of Final Research Achievements

In this research, we fabricated Si-QDs with Ge core (pseudo-super atom structure) with an areal density as high as ~1011 cm-2, and studied the carrier recombination dynamics in the Si-Ge pseudo-super atom structures. Based on the obtained results, we designed and fabricated a light emitting device containing Si-QDs with Ge core embedded in a SiO2 layer, and their luminescence characteristics were evaluated at room temperature. As a result, we found that the hole confinement in the Ge core plays an important role on radiative recombination in the Si-QDs with Ge core. In addition, we also found that the delta-doping of P or B atoms into Si-shell or Ge-core has potential to increase carrier injection efficiency. The results obtained in this research will lead to the development of current-injection type Si-based laser very compatible with Si-ULSI process that have been thought to have extreme difficulty in realizing silicon photonics.

Free Research Field

半導体工学

Academic Significance and Societal Importance of the Research Achievements

本研究で得られた成果は、シリコンULSIプロセスとの整合性が高く、シリコン・フォトニクスにおいて実現が極めて困難であると考えられていた電流注入型シリコン系レーザの開発に繋がると期待できる。さらには、飛躍的な進歩を遂げているシリコンULSI 技術をベースにSi 系量子ドットトランジスタやフローティングメモリデバイスを組み合わせて、将来の少数電子・少数光子を使った大規模な高度情報処理へと発展する可能性が高い。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi