2016 Fiscal Year Annual Research Report
Project/Area Number |
15J06842
|
Research Institution | Kyushu University |
Principal Investigator |
山口 尚哉 九州大学, 数理学府, 特別研究員(DC2)
|
Project Period (FY) |
2015-04-24 – 2017-03-31
|
Keywords | 群行列 / 群行列式 / Frobeniusの定理 / Dedekindの定理 / Capelli恒等式 |
Outline of Annual Research Achievements |
本研究の目的は、群行列式を拡張することにより、群行列式に関するFrobeniusの定理の一般化を得ること、この一般化を有限群論とその表現論へ応用することである。 群行列は、群の元に対する不定元を成分にもつある行列のことで、この群行列の行列式を群行列式という。Frobeniusは群行列式の複素数体上の既約分解を与えた。この定理をFrobeniusの定理という。 本研究者は、群行列と群行列式を拡張することにより、Frobeniusの定理の一般化を得た。Frobeniusの定理が、群の既約表現を用いて群行列式の既約分解を与えるのに対して、このFrobeniusの定理の一般化は、群の部分群の既約表現を用いて群行列式の因数分解を与える。 本研究では、まず多項式環をその多項式環と群環のテンソル積へと拡大し、元の多項式環を、拡大した環の部分環とみなす。そうすれば群行列を、多項式を成分にもつ行列環から、拡大した環の元を成分にもつ行列環の元とみなすことができ、これにより群環の正則表現を用いて、群行列と群行列式をそれぞれ、拡大した環の元を成分にもつ行列、拡大した環の元へと自然に拡張することができる。この拡張がFrobeniusの定理の一般化を導く。Frobeniusの定理の一般化は有限群の表現論への応用があり、有限群の既約表現の次数に関する情報が得られる。 さらに本研究では、この一般化を得る過程において、拡張した群行列のスペクトルや拡張した群行列式の性質、そして有限群と非可換行列式の関係性を考察した。この考察により、Dedekindの定理の拡張と一般化、Dedekindの定理のさらなる拡張とさらなる一般化、そして群環上のCapelli元が得られた。
|
Research Progress Status |
28年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
28年度が最終年度であるため、記入しない。
|
Research Products
(11 results)