• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Schubert calculus in equivariant K-theory

Research Project

  • PDF
Project/Area Number 15K04832
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOkayama University of Science

Principal Investigator

Ikeda Takeshi  岡山理科大学, 理学部, 教授 (40309539)

Co-Investigator(Kenkyū-buntansha) 成瀬 弘  山梨大学, 大学院総合研究部, 教授 (20172596)
Research Collaborator Nakasuji Maki  
Matsumura Tomoo  
Project Period (FY) 2015-04-01 – 2019-03-31
KeywordsK理論 / シューベルト類 / グラスマン多様体
Outline of Final Research Achievements

We obtained determinant and Pfaffian(sum) formulae for the Schubert classes in the equivariant K-theory of classical type A,B, and C Grassmannians (with Hudson, Matsumura, Naruse). Related to the GP functions which are identified with the Schubert classes of maximal orthogonal Grassmannians, we introduced a combinatorial notion called set-valued decomposition tableaux, and gave a conjecture on the structure constant, and gave a proof for special case called Piari case (with Cho, Nakasuji). We formulated K-theoretic Peterson isomorphism and proved it (with Iwao, Maeno). In the equivariant quantum cohomology ring, we proved the factorial P- and Q-funsctions represent the Schubert classes (with Mihalcea, Naruse). For the maximal orthogonal Grassmannian, we proved the Pieri rule in the equivariant cohomology (with Cho). Naruse joint with Kirillov introduced a family of functions that are identified with Schubert classes in the equivariant K-theory of the classical flag variety.

Free Research Field

代数学,組合せ論

Academic Significance and Societal Importance of the Research Achievements

等方グラスマン多様体の種々のコホモロジー理論において,シューベルト類の具体的な記述を与えた.特に同変K理論,同変コホモロジー,量子同変コホモロジーなどである.特に,行列式,パッフィアン公式は数10年来の懸案を解決した.構造定数に関してひとつの予想を立てた.これは組合せ論に新しい概念の導入を含む.その予想に対して,部分的,肯定的解決を与えた.また,K理論における量子・アフィン対応を証明した.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi