• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Multiplicity of a space over another space

Research Project

  • PDF
Project/Area Number 15K13439
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionWaseda University

Principal Investigator

Taniyama Kouki  早稲田大学, 教育・総合科学学術院, 教授 (10247207)

Project Period (FY) 2015-04-01 – 2018-03-31
Keywords多重度 / 結び目 / 空間グラフ
Outline of Final Research Achievements

Let $(X,\cdot)$ be a magma. A map $a:{\mathbb Z}\to X$ is a right-recursive sequence if $a(n)\cdot a(n+1)=a(n+2)$ for every $n\in{\mathbb Z}$. A map $a:{\mathbb Z}\to X$ is a left-recursive sequence if $a(n+2)=a(n+1)\cdot a(n)$ for every $n\in{\mathbb Z}$. When $(X,\cdot)=({\mathbb Z},+)$ a right-recursive sequence is a left-recursive sequence and it is a Fibonacci type sequence defined on ${\mathbb Z}$. We study various right-recursive sequences and left-recursive sequences. We also study various surjective right-recursive sequences and left-recursive sequences.

Free Research Field

幾何学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi