• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Annual Research Report

Study on nonlinear partial differential equations with set-valued perturbations

Research Project

Project/Area Number 15K13451
Research InstitutionWaseda University

Principal Investigator

大谷 光春  早稲田大学, 理工学術院, 教授 (30119656)

Project Period (FY) 2015-04-01 – 2019-03-31
Keywords集合値関数 / 非線形放物型方程式 / 劣微分作用素 / 非線形発展方程式
Outline of Annual Research Achievements

N-次元ユークリッド空間の有界領域Ωにおいて,次の半線形放物型方程式の斉次ディリクレ型境界値問題に対する時間周期問題: du/dt - △u + β(u) + G(x,t,u) = f(x,t), u(x,0) = u(x,T) の解の存在について研究した.ここで,β(u) は(多価)単調作用素,摂動項 G(x,t,u) は一価関数の連続性に集合値関数への拡張概念である,上半連続性(usc)及び下半連続性(lsc)を有する集合値関数.G(x,t,u) が通常の一価関数である時には,G(x,t,u) の u に関するソボレフ劣臨界増大条件のもとで,外力 f(x,t) が十分小さい時に,時間周期解の存在定理がよく知られているが,G が集合値関数の時には,G の u に関するソボレフ劣臨界増大度はもとより,一次以上の増大度条件の下でも,対応する結果は存在しなかった.本研究では,一気に G が一価の場合の最良な結果を,集合値関数の場合に拡張することに成功した.
本研究では
(1)「β(u) が G(x,t,u) より優位である時には,大きな外力 f(x,t) に対して時間周期解が存在し」
(2) 「G(x,t,u) が β(u) より優位な時でも,外力 f(x,t) が十分小さければ,時間周期解が存在する」ことを示した.
X を Ωx(0,T) 上の二乗可積分空間とし,X の元 h に対して,du/dt - △u + β(u) +h = f(x,t), u(x,0) = u(x,T) の解を u_h とするとき多価写像 Ψ: h →G(x,t,u_h) に対して,Kakutani-Ky Fan の不動点定理や Tolstonogov のselection 定理を経由したシャウダー型の不動点定理をΨに適用する事により時間周期解の存在を構成した.

  • Research Products

    (9 results)

All 2018

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results)

  • [Journal Article] On some parabolic systems arising from a nuclear reactor model with nonlinear boundary conditions2018

    • Author(s)
      Kita, K., Otani, M. and Sakamoto, H.
    • Journal Title

      Adv. Math. Sci. Appl.

      Volume: 27 Pages: 193-224

    • Peer Reviewed
  • [Journal Article] Initial-boundary value problems for complex Ginzburg-Landau equations governed by p-Laplacian in general domains2018

    • Author(s)
      Kuroda, T. and Otani, M.
    • Journal Title

      Libertas Mathematica (new series)

      Volume: 38 Pages: 67-104

    • Peer Reviewed
  • [Journal Article] Analysis of a PDE model of the swelling of mitochondria accounting for spatial movement2018

    • Author(s)
      Efendiev, M. A., Otani, M. and Eberl, H. J.
    • Journal Title

      Mathematical Methods in the Applied Sciences

      Volume: 41(5) Pages: 2162-2177

    • DOI

      https://doi.org/10.1002/mma.4742

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Existence of Time Periodic Solution to Some Double-Diffusive Convection System in the Whole Space Domain2018

    • Author(s)
      Otani, M. and Uchida, S.
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: 20(3) Pages: 1035-1058

    • DOI

      https://doi.org/10.1007/s00021-017-0354-1

    • Peer Reviewed
  • [Journal Article] L∞-energy method for a parabolic system with convection and hysteresis effect2018

    • Author(s)
      Minchev, E. and Otani, M.
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 17(4) Pages: 1613-1632

    • DOI

      https://doi.org/10.3934/cpaa.2018077

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Right-Differentiability of Solution to Nonlinear Evolution Equations with Perturbation2018

    • Author(s)
      Otani, M. and Uchida, S.
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Int'l Joint Research / Invited
  • [Presentation] Global Existence of the Solutions for the Complex Ginzburg-Landau Equations with P-Laplacian2018

    • Author(s)
      Kuroda, T. and Otani, M.
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Int'l Joint Research / Invited
  • [Presentation] On Some Parabolic System Arising from a Nuclear Reactor Model with Nonlinear Boundary Conditions2018

    • Author(s)
      Kita, K. and Otani, M.
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Int'l Joint Research / Invited
  • [Presentation] On the Existence of the Global Solutions of the Viscous Cahn-Hilliard Equation2018

    • Author(s)
      Kagawa, K. and Otani, M.
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Int'l Joint Research / Invited

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi