2018 Fiscal Year Final Research Report
Microlocal analysis of topological Radon transforms and their applications to singularity theory
Project/Area Number |
15K17564
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Basic analysis
|
Research Institution | Kindai University |
Principal Investigator |
MATSUI Yutaka 近畿大学, 理工学部, 准教授 (10510026)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | ラドン変換 / 構成可能関数 / 定義可能関数 |
Outline of Final Research Achievements |
In this research, we study integral transforms of constructible functions and definable functions, whose integral theory is based on the topological Euler characteristics. We obtained the following results: the injectivity theorem of topological Radon transforms of constructible functions on compact Grassmann manifolds, several properties of topological Radon transforms of globally constructible functions on affine Grassmann manifolds and several properties of topological Radon transforms of definable functions.
|
Free Research Field |
数学(代数解析学)
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では位相的ラドン変換と呼ばれる積分変換の反転公式や像の特徴づけを中心としたさまざまな性質を研究している.それは切断面のオイラー数から元の集合を復元するという幾何学的CTスキャンの原理におけるその切断面の様子や元の集合の復元可能性についての研究であるといえる.今回の研究成果は,先行研究とは数学的に異なるさまざまな設定の下で,位相的ラドン変換の反転公式や像の特徴づけについて考察を行い,類似の結果が得られることを明らかにしたものである.
|