• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

ON AUTOMORPHIC L-FUNCTIONS OF GENERAL SYMPLECTIC AND UNITARY GROUPS OF RANK TWO

Research Project

Project/Area Number 16540034
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOSAKA CITY UNIVERSITY

Principal Investigator

FURUSAWA Masaaki  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, PROFESSOR, 大学院理学研究科, 教授 (50294525)

Co-Investigator(Kenkyū-buntansha) KANEDA Masaharu  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, PROFESSOR, 大学院理学研究科, 教授 (60204575)
KAWATA Shigeto  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, ASSOCIATE PROFESSOR, 大学院理学研究科, 助教授 (50195103)
KADO Jiro  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, LECTURER, 大学院理学研究科, 講師 (10117939)
ICHINO Atushi  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, ASSISTANTO, 大学院理学研究科, 助手 (40347480)
TANISAKI Toshiyuki  OSAKA CITY UNIVERSITY, GRADUATE SCHOOL OF SCIENCE, PROFESSOR, 大学院理学研究科, 教授 (70142916)
Project Period (FY) 2004 – 2006
KeywordsRelative Trace Formula / Automorphic L-function / Siegel modular form / Special Value of L-function
Research Abstract

We have continued the projects concerning the automorphic L-functions of gereral symplectic and unitary groups of rank two. More specifically one of the main projects is to prove the generalization of Siegfried Boecherer's conjecture concerning the central critical values of the degree four L-functions for the Siegel eigen cusp forms of degree two. Our method is to establish certain relative trace formulas, which may be regarded as natural generalizations of Jacquet's relative trace formulas which have given another proof of celebrated Waldspurger's theorem on the relation between the torus period for GL(2) and the central critical values of automorphic L-functions for GL(2).
In order to establish a relative trace formula, proving the fundamental lemma is the first and crucial step. We have proved the fundamental for the unit element of the Hecke algebra already and published the result as No. 782 of the Memoirs of the AMS. During the period supported by this grant, we worked on extending the fundamental lemma from the unit element to the entire Hecke algebra. We have discovered that, by applying the theory of Macdonald polynomials to the explicit formulas for the Bessel model, the evaluation of the Kloosterman orbital integral for the general element in the Hecke algebra is reduced to the computation of general Kostka numbers and that of degenerate Kloosterman orbital integrals for the unit element of the Hecke algebra. We have evaluated all of them. Now our remaining task is to compare the linear combinations of these corresponding to the both sides of the trace formula and to make sure they match.

  • Research Products

    (12 results)

All 2007 2006 2005

All Journal Article (12 results)

  • [Journal Article] On the Siegel-Weil formula for unitary groups2007

    • Author(s)
      Ichino, Atsushi
    • Journal Title

      Mathematicshe Zeitschrift 255・4

      Pages: 721-729

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] ON THE SIEGEL-WEIL FORMULA FOR UNITARY GROUPS2007

    • Author(s)
      ATSUSHI ICHINO
    • Journal Title

      MATHEMATISCHE ZEITSCHRIFT 255

      Pages: 721-729

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On Auslander-Reiten components and Heller lattices for integral group rings2006

    • Author(s)
      Kawata, Shigeto
    • Journal Title

      Algebras and Representation Theory 9・5

      Pages: 513-524

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra2006

    • Author(s)
      Tanisaki, Toshiyuki
    • Journal Title

      Nagoya Mathematical Journal 182

      Pages: 285-311

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] ON AUSLANDER-REITEN COMPONENTS AND HELLER LATTICES FOR INTEGRAL GROUP RINGS2006

    • Author(s)
      SHIGETO KAWATA
    • Journal Title

      ALGEBRAS AND REPRESENTATION THEORY 9

      Pages: 513-524

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] KAZHDAN-LUSZTIG BASIS AND A GEOMETRIC FIBRATION OF AN AFFINE HECKE ALGEBRA2006

    • Author(s)
      TOSHIYUKI TANISAKI
    • Journal Title

      NAGOYA MATHEMATICAL JOURNAL 182

      Pages: 285-311

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Pullbacks of Saito-Kurokawa lifts2005

    • Author(s)
      Ichino, Atsushi
    • Journal Title

      Invent. Math. 162・3

      Pages: 551-647

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Beilinson-Bernstein correspondence for quantized enveloping algebras2005

    • Author(s)
      Tanisaki, Toshiyuki
    • Journal Title

      Mathematicshe Zeitschrift 250・2

      Pages: 299-361

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On Heller lattices over ramified extended orders2005

    • Author(s)
      Kawata, Shigeto
    • Journal Title

      J. Pure Appl. Algebra 202・1-3

      Pages: 55-71

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] PULLBACKS OF SAITO-KUROKAWA LIFTING2005

    • Author(s)
      ATSUSHI ICHINO
    • Journal Title

      INVENT. MATH. 162

      Pages: 551-647

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] ON HELLER LATTICES OVER RAMIFIED EXTENDED ORDERS2005

    • Author(s)
      SHIGETO KAWATA
    • Journal Title

      J. PURE. APPL. ALGEBRA 202

      Pages: 55-71

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] THE BEILINSON-BERNSTEIN CORRESPONDENCE FOR QUANTIZED ENVELOPING ALGEBRAS2005

    • Author(s)
      TOSHIYUKI TANISAKI
    • Journal Title

      MATHEMATISCHE ZEITSCHRIFT 250

      Pages: 299-361

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi