• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Cayley algebra and Grassmann geometry

Research Project

Project/Area Number 16540055
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

MASHIMO Katsuya  Tokyo University of Agriculture and Technology, Institute of Symbiotic Science and Technology, Professor, 大学院共生科学技術研究院, 教授 (50157187)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Hideya  Meuji University, Faculty of Science and Technology, Professor, 理工学部, 教授 (60218419)
UDAGAWA Seiichi  Nihon University, School of Medicine, Associate Professsor, 医学部, 助教授 (70193878)
TASAKI Hiroyuki  University of Tsukuba, Graduate School of Pure and Applied Sciences, Associate Professor, 大学院数理物質科学研究科, 助教授 (30179684)
KODA Takashi  Toyama University, Graduate School of Science and Engineering, Associate Professor, 大学院理工学研究部, 助教授 (40215273)
Project Period (FY) 2004 – 2006
KeywordsGrassmann geometry / Spin(7) / Cayley calivration / submanifold / exterior product
Research Abstract

(1) We already classified the case that the image of Cartan embedding into compact simple Lie group are minimal and stable
if the Cartan embedding is defined by automorphism of order 2 or 3
if the Cartan embedding is defined by inner automorphisim of order 4
We classified the case that the image of Cartan embedding into compact if it is defined by outer automorphism of order 4.
(2) We classified 6-dimensional submanifolds of 8 dimensional Euclidean space which are invariant under the action of Spin(7) by joint work with Hashimoto, Koda and Sekigawa.
(3) We classified 3-dimensional submanifolds of 7-dimensional sphere with the property that the cone over the submanifold is calibrated by Cayley calibration.
(4) We considered a method of construction of invariant p-th exterior product of an irreducible representation of SU(2). And, as an example, we gave the invariant element in 3-rd exterior product of 11-dimesional SU(2)-irreducible representation.

  • Research Products

    (7 results)

All 2006 2005 Other

All Journal Article (7 results)

  • [Journal Article] On the branching theorem of the pair (F_4, Spin (9) )2006

    • Author(s)
      Katsuya Mashimo
    • Journal Title

      Tsukuba J. Math. 30

      Pages: 31-47

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the branching theorem of the pair (F_4, Spin(9))2006

    • Author(s)
      Katsuya Mashimo
    • Journal Title

      Tsukuba J.Math. 30

      Pages: 31-47

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the existence of 3-dimensional invariant submanifolds of S^62005

    • Author(s)
      Katsuya Mashimo
    • Journal Title

      Topics in almost Hermitian geometry and related fields

      Pages: 186-189

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On some tubes over J-holomorphic curves in S^62005

    • Author(s)
      Hideya Hashimoto, Katsuya Mashimo
    • Journal Title

      Tokyo J. Math. 28

      Pages: 579-591

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On some tubes over $J$-holomorphic curves in S^62005

    • Author(s)
      Hideya Hashimoto, Katsuya Mashimo
    • Journal Title

      Tokyo J.Math. 28

      Pages: 579-591

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Extrinsic homogeneous almost Hermitian 6-dimesional submanifolds in octonions

    • Author(s)
      Hideya Hashimoto, Takashi Koda, Katsuya Mashimo, Kouei Sekigawa
    • Journal Title

      Kodai Math. J. (To appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Extrinsic homogeneous almost Hermitian 6-dimensional submanifolds in octonions

    • Author(s)
      Hideya Hashimoto, Takashi Koda, Katsuya Mashimo, Kouei Sekigawa
    • Journal Title

      Kodai Math.J. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi