• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Annual Research Report

結び目と3次元多様体の有限型不変量と量子不変量

Research Project

Project/Area Number 16F16716
Research InstitutionKyoto University

Principal Investigator

大槻 知忠  京都大学, 数理解析研究所, 教授 (50223871)

Co-Investigator(Kenkyū-buntansha) MOUSSARD DELPHINE  京都大学, 数理解析研究所, 外国人特別研究員
Project Period (FY) 2016-10-07 – 2019-03-31
Keywords結び目 / 3次元多様体 / 不変量
Outline of Annual Research Achievements

外国人特別研究員のデルフィーヌさんは、結び目と3次元多様体の不変量について研究している。デルフィーヌさんは、有理ホモロジー球面の中の null homologous な結び目の不変量を、曲面の3重交叉を用いて、定義した。デルフィーヌさんは、組みひも群のある種の作用の有限軌道について研究した。デルフィーヌさんは、LP手術に関する結び目の有限型不変量について、結び目のコンセビッチ不変量のループ展開と関連して、研究した。デルフィーヌさんは、2次元結び目のアレクサンダー多項式の分解について研究し、その多項式が分解するための2次元結び目の位相幾何学的条件を与えた。デルフィーヌさんは、4次元多様体の trisection 図式を用いて4次元多様体の torsion を記述した。
とくに、有理ホモロジー球面の中の null homologous な結び目の不変量を曲面の3重交叉を用いて表す研究で、デルフィーヌさんは、結び目補空間の無限巡回被覆空間を考え、結び目を境界とする曲面のリフトを3つ、その空間の中で考え、それらの3重交叉として、その不変量を定義した。この不変量は、結び目のアレクサンダー加群の3重テンソル積上の写像として定義される。また、ボロミアン手術に関するこの不変量の挙動は具体的に計算することができて、それによりこの不変量はある種の有限型不変量であることがわかり、この不変量が具体的にとる値を計算することができる。
デルフィーヌさんは、それらの研究成果について、国内外で非常に活発に講演している。また、デルフィーヌさんは数理解析研究所の特定助教の清水達郎さんと共同でKyoto Young Topologists Seminarを主催して、公開セミナーを毎週行っていた。デルフィーヌさんの研究は、デルフィーヌさんにとっても筆者にとっても日本の他の専門家にとっても非常に有意義であった。

Research Progress Status

平成30年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

平成30年度が最終年度であるため、記入しない。

  • Research Products

    (10 results)

All 2019 2018

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (4 results) (of which Invited: 4 results)

  • [Journal Article] Finite type invariants of knots in homology 3-spheres with respect to Lagrangian-preserving surgeries2019

    • Author(s)
      D. Moussard
    • Journal Title

      Geometry & Topology

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed
  • [Journal Article] Splitting formulas for the rational lift of the Kontsevich integral2019

    • Author(s)
      D. Moussard
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed
  • [Journal Article] Toward universality in degree 2 of the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant2019

    • Author(s)
      D. Moussard
    • Journal Title

      International Journal of Mathematics

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed
  • [Journal Article] On the asymptotic expansions of the Kashaev invariant of the knots with 6 crossings2018

    • Author(s)
      OHTSUKI TOMOTADA、YOKOTA YOSHIYUKI
    • Journal Title

      Mathematical Proceedings of the Cambridge Philosophical Society

      Volume: 165 Pages: 287~339

    • DOI

      10.1017/S0305004117000494

    • Peer Reviewed
  • [Journal Article] On the asymptotic expansion of the quantumSU(2) invariant at q =exp(4π?N) for closed hyperbolic 3?manifolds obtained byintegral surgery along the figure-eight knot2018

    • Author(s)
      Ohtsuki Tomotada
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 18 Pages: 4187~4274

    • DOI

      10.2140/agt.2018.18.4187

    • Peer Reviewed
  • [Journal Article] Finite Braid group orbits in $\mathbf{Aff}\boldsymbol{(\mathbb{C})}$-character varieties of the punctured sphere2018

    • Author(s)
      Cousin Ga?l、Moussard Delphine
    • Journal Title

      International Mathematics Research Notices

      Volume: 2018 Pages: 3388~3442

    • DOI

      10.1093/imrn/rnw283

    • Peer Reviewed
  • [Presentation] Torsions of 4-manifolds from trisection diagrams2018

    • Author(s)
      D. Moussard
    • Organizer
      Kyoto young topologists seminar
    • Invited
  • [Presentation] A Fox-Milnor theorem for knotted spheres in S^42018

    • Author(s)
      D. Moussard
    • Organizer
      Handle friendship seminar
    • Invited
  • [Presentation] 2-knots with factorized Alexander polynomial2018

    • Author(s)
      D. Moussard
    • Organizer
      Low-dimensional topology seminar
    • Invited
  • [Presentation] Trisections of 4-manifolds2018

    • Author(s)
      D. Moussard
    • Organizer
      Kyoto young topologists seminar
    • Invited

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi