2022 Fiscal Year Final Research Report
Comprehensive research on representation theory of orders
Project/Area Number |
16H03923
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | The University of Tokyo (2020, 2022) Nagoya University (2016-2019) |
Principal Investigator |
Iyama Osamu 東京大学, 大学院数理科学研究科, 教授 (70347532)
|
Co-Investigator(Kenkyū-buntansha) |
高橋 亮 名古屋大学, 多元数理科学研究科, 准教授 (40447719)
毛利 出 静岡大学, 理学部, 教授 (50436903)
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Keywords | (団)傾理論 / Cohen-Macaulay表現 / Auslander-Reiten理論 / 導来圏、三角圏、dg圏 / (Auslander-)Gorenstein環 / d有限表現型 / 非可換特異点解消 / 団代数 |
Outline of Final Research Achievements |
We studied the representation theory of orders mainly from a point of view of tilting theory, CM (=Cohen-Macaulay) representations, and AR (=Auslander-Reiten) theory. In addition to the following main results, we obtained a number of new results. (1) I gave an invited talk at the International Congress of Mathematicians 2018 on tilting theory and CM representations. We also published a book on Geigle-Lenzing complete intersections from AMS Memoir. (2) We made a great progress on a basic theory in tilting theory including torsion classes, reductions of triangulated categories, simple-minded collections, and so on. (3) We studied Auslander-Gorenstein algebras from a point of view of higher dimensional AR theory, and applied them to the study of non-commutative resolutions of singularities. We also made a systematic construction of d-representation-finite selfinjective algebras, and applied it to the study of the periodicity of trivial extension algebras.
|
Free Research Field |
代数学
|
Academic Significance and Societal Importance of the Research Achievements |
環とは加法、減法、乗法の与えられた数体系の一般化であり、現代数学の重要な基本概念である。環の表現論は1970年代に確立された若い分野であり、中でもホモロジー代数学で基本的な導来圏を扱う傾理論と、様々な表現の圏構造を制御するAuslander-Reiten理論が重要である。環の表現論は、団(クラスター)代数・量子群の圏化や非可換特異点解消をはじめとして数学の諸分野で重要な役割を果たしている。中でも整環(order)の表現は、箙(quiver)の表現と可換環のCohen-Macaulay表現を結びつける重要な研究対象であり、本研究計画は整環の表現論を深化させることを目的としている。
|