2018 Fiscal Year Annual Research Report
Project/Area Number |
16J02171
|
Research Institution | Tohoku University |
Principal Investigator |
小田部 秀介 東北大学, 理学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2016-04-22 – 2019-03-31
|
Keywords | Abhyankar予想 / 基本群スキーム / 正標数代数曲線 / 根スタック / フロベニウス核 / 線型簡約群スキーム / 有限平坦主束 / Jacobson-Witt代数 |
Outline of Annual Research Achievements |
昨年度、正標数アフィン代数曲線に対するAbhyankar予想の純非分離類似を定式化したが、古典的な予想は分岐制限を設けたより精密な形で証明されていた。当初からこの方向での精密化も視野に入れてはいたが、実際、これまで有効な手立てが無かった。しかし、最近の馴分岐主束に関する研究がこれを後押しし、根スタックと呼ばれる代数的スタックに着目すると良い定式化が得られる、と認識するに至った。そこで、この方向に研究を進めた。実際、以前得ていた冪零の場合の結果を精密化することに成功した。この結果を論文として執筆、投稿を行った。論文は現在査読中である。 また昨年度までの結果はCartan型と呼ばれる群スキームを一つも含んでいない。そこでCartan型の有限単純群スキームの中で最も基本的であると思われる一次のJacobson-Witt代数に対応する有限群スキームに関して計算を進めた。本課題に取り組む中で、昨年度得ていた標数2かつ階数2の一般線型群のフロベニウス核に関する結果を一般標数及び一般階数にまで拡張することに成功した。 昨年度、有限線型簡約主束の持ち上げ問題に取り組んだ。しかし、議論に致命的な誤りを見つけたため、改訂を試みた。議論の修正を行い、さらにその応用として、正標数代数曲線のtame基本群スキームのある種のモジュライ依存性を示すことに成功した。正標数代数曲線のtame基本群スキームに関して、その最大不分岐商と最大純非分離商は簡明な記述がある。しかし、tame基本群スキーム全体の記述は知られていなかったが、今回、代数曲線の定義体に独立ではない、という結果を得ることが出来た。この内容で、論文の大幅な改訂、投稿を行った。論文は現在査読中である。
|
Research Progress Status |
平成30年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
平成30年度が最終年度であるため、記入しない。
|