• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Developing a theory for model selection in semiparametric statistical analysis

Research Project

  • PDF
Project/Area Number 16K00050
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics (2018-2021)
Kyushu University (2016-2017)

Principal Investigator

Ninomiya Yoshiyuki  統計数理研究所, 数理・推論研究系, 教授 (50343330)

Project Period (FY) 2016-04-01 – 2022-03-31
Keywords因果推論 / 傾向スコア解析 / 情報量規準 / スパース推定 / セミパラメトリック推定 / 統計的漸近理論 / モデル選択 / SURE理論
Outline of Final Research Achievements

In causal inference, what is observed and what is actually observed usually influence each other, and applying classical statistical theory gives unreasonable results. One solution to this problem is to use propensity score analysis, which is rapidly developing, but the method of model selection, i.e., what regression model to use, has not been established. In this study, we developed an information criterion, a standard tool for model selection, for propensity score analysis and completed the general theory.

Free Research Field

数理統計学

Academic Significance and Societal Importance of the Research Achievements

因果推論の情報量規準としては,数理的に妥当でないものが試験的に用いられていたが,それは本成果の情報量規準と大幅に異なる値を返すものであった.つまり,両者のモデル選択の結果は相当に異なるものであり,本提案は今後標準的に用いられていくことが期待される.因果推論は機械学習・医学統計・計量経済学でのホットトピックであり,またモデル選択は統計解析において不可欠なタスクであるため,本成果の意義は小さくないものである.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi