2018 Fiscal Year Final Research Report
Development of Water Treatment Technology by Dielectric Barrier Discharge Produced on Liquid Surface for High-Speed Degradation of Persistent Substances
Project/Area Number |
16K06226
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Power engineering/Power conversion/Electric machinery
|
Research Institution | The University of Tokushima |
Principal Investigator |
TERANISHI Kenji 徳島大学, 大学院社会産業理工学研究部(理工学域), 准教授 (80435403)
|
Co-Investigator(Kenkyū-buntansha) |
下村 直行 徳島大学, 大学院社会産業理工学研究部(理工学域), 教授 (90226283)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 誘電体バリア放電 / 難分解性物質 / 水処理 / 酢酸 / OHラジカル |
Outline of Final Research Achievements |
Water treatment technology by a dielectric barrier discharge (DBD) capable of increasing the discharge area was developed for the purpose of realizing faster degradation of persistent substances with the higher efficiency. In the present water treatment reactor, the persistent substances can be degraded by the DBD plasma generated on the surface of the target solution supplied as a water film on the planer electrode. The adjustment mechanism for the electrode gap distance, which is quite important to form the water film on the electrode, was constructed to improve the operability of the present water treatment reactor. When the argon gas was used as the discharge gas, the decoloriaztion efficiency of the indigo carmine and the degradation efficiency of the acetic acid were improved by decreasing the gap distance. It was concluded that the increase in the OH radical formations due to the shorter gap distance configuration is one of the factors that improve both the efficiencies.
|
Free Research Field |
工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,アルゴンガスを用いた誘電体バリア放電(DBD)を,薄膜状に形成した処理対象水面上で生成し,ギャップ長を短くすることで,難分解性物質の分解効率を向上させることができた。今後は目的・用途に応じて水処理装置の大規模化を行うことで,難分解性物質分解の高速化や,OHラジカルを効率よく生成できる放電ガスを模索することで,さらなる分解効率向上が期待できる。これにより,放電プラズマによる水処理技術の早期実用化に貢献できる可能性がある。
|