2018 Fiscal Year Final Research Report
Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
Project/Area Number |
16K13774
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Kyoto University |
Principal Investigator |
ISO Yuusuke 京都大学, 情報学研究科, 教授 (70203065)
|
Co-Investigator(Kenkyū-buntansha) |
藤原 宏志 京都大学, 情報学研究科, 准教授 (00362583)
今井 仁司 同志社大学, 理工学部, 教授 (80203298)
|
Research Collaborator |
SHEEN Dongwoo
HIGASHIMORI Nobuyuki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 数値解析 / 分数階微分方程式 / 函数方程式 / 数理モデル / 逆問題解析 |
Outline of Final Research Achievements |
We have shown some new results both in mathematical and numerical analysis for fractional order ordinary differential equations (F-ODE), which are equivalent to weakly singular integral equation of the Volterra type. We focus on regularity of unknown functions up to the the initial points, and we have clarified assumptions in the fundamental theorem for existence and uniqueness of solutions. We showed new results on numerical instability for a well-known scheme and give a new reliable numerical one. We also focus on limitation of F-ODE as mathematical models for phenomena including glucose concentration.
|
Free Research Field |
数物系科学/数学 (数学基礎・応用数学)
|
Academic Significance and Societal Importance of the Research Achievements |
分数階方程式を利用した現象の数理モデル化とその解析は、この近年人口に膾炙される傾向にあるが、本課題研究はこれらの研究を支える基盤の一つを構築した。同時に、従来の議論と同様に構成的考察により現象の数理モデル化を論じることには制約があることを示し、data drivenを基本とするdata science的な考え方に基づく数理モデル化での分数階方程式の活用の有効性を示唆した。この成果は先端的な数理科学の基礎研究と応用研究の両面に寄与するものである。
|