• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

What makes a phase transition genuinely quantum?-Numerical study of deconfined excitations-

Research Project

  • PDF
Project/Area Number 16K17762
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical physics/Fundamental condensed matter physics
Research InstitutionThe University of Tokyo

Principal Investigator

Suwa Hidemaro  東京大学, 大学院理学系研究科(理学部), 助教 (60735926)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords量子臨界 / 脱閉じ込め / スピノン / 分数励起 / 量子モンテカルロ / スペクトル / 対称性
Outline of Final Research Achievements

Phase transitions and critical phenomena emerging in strongly correlated systems are central topics in statistical mechanics. The Landau theory, which is a standard theory of phase transitions, accounts for many properties of actual phase transitions including many quantum phase transitions. In the meantime, the deconfined quantum criticality has caught the attention as a nontrivial phenomenon rendering a phase transition genuinely quantum beyond the Landau paradigm. At this unusual criticality, deconfined fractional excitations are predicted by an effective field theory. We have studied the deconfined quantum criticality appearing in a two-dimensional quantum spin system using the path-integral quantum Monte Carlo method and elucidated the characteristic spectrum of fractional excitations.

Free Research Field

物性物理・統計力学

Academic Significance and Societal Importance of the Research Achievements

本研究のテーマは、相転移の基礎理論を超える量子相転移の物理を明らかにする点で、統計力学の最も重要な問題のひとつと言える。本課題は、新しい計算手法を開発しながら、非自明な量子相転移での分数励起(通常現れる粒子がいくつかに別れる励起)を初めて明らかにした。我々は励起エネルギーを高精度で見積もる計算法を開発し、量子モンテカルロ法によるエネルギーギャップ解析を確立させた。この手法を武器として2次元量子スピン系を解析し、分数励起の線形分散関係を明らかにした。本研究は相転移の基礎理論を超える臨界現象における励起状態を明らかにした点で、統計力学と物性物理の発展に大きく貢献する。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi