• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Research on coverings of curves and toric varieties through Weierstrass points

Research Project

Project/Area Number 17540046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKanagawa Institute of Technology

Principal Investigator

KOMEDA Jiryo  Kanagawa Institute of Technology, Center for Basic Education and Integrated Learning, Prof., 基礎・教養教育センター, 教授 (90162065)

Co-Investigator(Kenkyū-buntansha) OHBUCHI Akira  Tokushima University, Integrated Arts and Sciences, Prof., 総合科学部, 教授 (10211111)
Project Period (FY) 2005 – 2006
KeywordsWeierstrass point / Weierstrass semigroup / Double covering of a curve / Affine toric variety / Numerical semigroup / Non-singular plane curve / Non-singular curve of genus 9 / Rational ruled surface
Research Abstract

This research is devoted to the following:
(1)The description of the Weierstrass semigroup of a ramification point on a double covering of a curve and its existence.
(2)Study on affine toric varieties which contain a monomial curve associated with a numerical semigroup of low genus.
(3)The determination of the candidates of the Weierstrass semigroup of a point on a non-singular plane curve of low degree.
For (1) we constructed a double covering of a curve with a ramification point over any point and describe the Weierstrass semigroup of the ramification point. An m-semigroup means a numerical semigroup whose minimum positive integer is m. We showed that there is a Weierstrass 2n-semigroup which is not the Weierstrass semigroup of any ramification point on a double covering of a curve for any n>2. But we also proved that any 4-semigroup is the Weierstrass semigroup of some ramification point on a double covering of a curve. In this case, if the number of the ramification points is small, we got such a covering using blow-ups of some rational ruled surface.
For (2) we found an affine toric variety which contains a non-primitive 7-semigroup of genus 9 generated by 5 or 6 elements except two cases. Moreover, we also found an affine toric variety which contains a non-primitive 6-semigroup of genus 9 except the semigroups which are the Weierstrass semigroups of ramification points on double coverings. By virtue of the results there are only two numerical semigroups of genus 9 which are not decided whether it is Weierstrass or not.
For (3) we gave the complete description of the candidates for the Weierstrass semigroup of a point on a non-singular plane curve of degree 7.

  • Research Products

    (14 results)

All 2007 2006 2005 Other

All Journal Article (14 results)

  • [Journal Article] Weierstrass points on a non-singular plane curve of degree 72007

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      神奈川工科大学研究報告 B(理工学編) 31

      Pages: 29-34

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrass semigroup2007

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Tsukuba Journal of Mathematics 31(To appear in)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weierstrass points on a non-singular plane curve of degree 72007

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-31

      Pages: 29-34

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On double coverings of a pointed non-singular curve with any Weierstrass semigroup2007

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      To appear in Tsukuba Journal of Mathematics 31

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On 7-semigroups of genus 9 generated by 5 elements2006

    • Author(s)
      J.Komeda
    • Journal Title

      神奈川工科大学研究報告 B(理工学編) 30

      Pages: 91-100

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On numerical semigroups of genus 92006

    • Author(s)
      J.Komeda
    • Journal Title

      数理解析研究所講究録 1503

      Pages: 70-75

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve2006

    • Author(s)
      M.Homma, S.J.Kim, J.Komeda
    • Journal Title

      Journal of Algebra 305

      Pages: 1-17

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Corrigendum for Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve2006

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 32

      Pages: 375-378

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On 7-semigroups of genus 9 generated by 5 elements2006

    • Author(s)
      J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-30

      Pages: 91-100

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On numerical semigroups of genus 92006

    • Author(s)
      J.Komeda
    • Journal Title

      RIMS Kokyuroku 1503

      Pages: 70-75

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On Weierstrass 7-semigroups2005

    • Author(s)
      J.Komeda
    • Journal Title

      数理解析研究所講究録 1437

      Pages: 136-144

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On Weierstrass 7-semigroups2005

    • Author(s)
      J.Komeda
    • Journal Title

      RIMS Kokyuroku 1437

      Pages: 136-144

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Weierstrass semigroups whose minimum positive integers are even

    • Author(s)
      J.Komeda
    • Journal Title

      Archiv der Mathematik (To appear in)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weierstrass semigroups whose minimum positive integers are even

    • Author(s)
      J.Komeda
    • Journal Title

      To appear in Archiv der Mathematik

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi