• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

A study of harmonic analysis for orthogonal expansions

Research Project

Project/Area Number 17540155
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKanazawa University

Principal Investigator

KANJIN Yuichi  Graduate School of Natural Science and Technology., Professor, 自然科学研究科, 教授 (50091674)

Co-Investigator(Kenkyū-buntansha) SATO Shuichi  Faculty of Education, Associate Professor, 教育学部, 助教授 (20162430)
TOHGE Kazuya  Graduate School of Natural Science and Technology, Associate Professor, 自然科学研究科, 助教授 (30260558)
ARAI Hitosi  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院数理科学研究科, 教授 (10175953)
MIYACHI Akihiko  Tokyo Woman's Christian University, College of Arts and Science, Professor, 文理学部, 教授 (60107696)
Project Period (FY) 2005 – 2006
Keywordstransplantation operator / Cesaro operator / Paley's inequality / real Hardy space / Hankel transform
Research Abstract

Our main results of this research project are summarized as follows. The transplantation theorem for the Hankel transform has been proved on the real Hardy space. A transplantation operator is an operator which maps a function with the Fourier expansion in an orthogonal system to the function with the same Fourier coefficients with respect to another orthogonal system. A transplantation theorem is a theorem which asserts the boundedness of the transplantation operator. This type of theorem is a useful tool in harmonic analysis for orthogonal expansions. The Hankel transform is one of the integral transforms, and coincides with the Fourier transform as a special case. Estimations of operators on the real Hardy space allow us to get the corresponding estimations of the operators on the Lebesegue spaces. In such a useful scheme, we have obtained a transplantation theorem.
Transplantation operators are regarded as a generalization of the Hilbert transform. It is known that the Hilbert transform maps a function with certain conditions to an integrable function. We have proved that the transplantation operators for the Hankel transform have the same properties. Using this result, we have showed that the Cesaro operators for the Hankel transform are bounded on the space of integrable functions and on the real Hardy space.
We have obtained Paley's inequality of integral transform type. The classical Paley inequality says that in the Fourier expansion of a function in the real Hardy space, the sum of the absolute values of its Fourier coefficients taken over the Hadamard gaps converges, and the sum is bounded by the square of the real Hardy space norm of the function. We have showed that an inequality of the same type as the classical Paley inequality holds for the Hankel transform.

Research Products

(10 results)

All 2006 2005 Other

All Journal Article (10 results)

  • [Journal Article] Transplantation operators and Cesaro operators for the Hankel transform2006

    • Author(s)
      Yuichi Kanjin
    • Journal Title

      Studia Math. 174・1

      Pages: 29-45

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Uniqueness theorems in an angular domain2006

    • Author(s)
      Weichuan Lin
    • Journal Title

      Tohoku Math. J. 58・4

      Pages: 509-527

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weighted Hardy spaces on an interval and Poisson integrals associated with ultraspherical series2006

    • Author(s)
      Akihiko Miyachi
    • Journal Title

      J. Funct. Anal. 239・2

      Pages: 446-496

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Transplantation theorem for Jacobi series in weighted Hardy spaces, II2006

    • Author(s)
      Akihiko Miyachi
    • Journal Title

      Math. Ann. 336

      Pages: 111-153

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Uiniqueness theorems in an angular domain2006

    • Author(s)
      Weichuan, Lin
    • Journal Title

      Tohoku Math. J. 58・4

      Pages: 509-527

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Weighted Hardy spaces on an interval and Poisson integrals associated with ultraspherical series2006

    • Author(s)
      Akihiko, Miyachi
    • Journal Title

      J. Funct. Anal 239・2

      Pages: 446-496

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Transplantation theorem for Jacobi series in weighted Hardy spaces II2006

    • Author(s)
      Akihiko, Miyachi
    • Journal Title

      Math. Ann. 336

      Pages: 111-153

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A transplantation theorem for the Hankel transform on the Hardy space2005

    • Author(s)
      Yuichi Kanjin
    • Journal Title

      Tohoku Math. J. 57

      Pages: 231-246

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weighted estimates for maximal functions associated with Fourier multipliers

    • Author(s)
      Shuichi Sato
    • Journal Title

      Studia Sci. Math. Hungar. (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Weighted estimates for maximal functions associated with Fourier multipliers

    • Author(s)
      Shuichi Sato
    • Journal Title

      Studia Sci. Math. Hungar. (in press)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi