2022 Fiscal Year Final Research Report
Research on ultrafine nitride semiconductor nanostructure for optical device platform fabricated by low-damege etching technique
Project/Area Number |
17H02747
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nanomaterials engineering
|
Research Institution | Sophia University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Keywords | ナノ加工 / エッチング / ナノ構造 / 量子構造 / 光デバイス / 発光効率 / 窒化物半導体 / InGaN |
Outline of Final Research Achievements |
We have developed a fabrication technique for high-quality ultra-fine InGaN/GaN nanostructures by the hydrogen environment anisotropic thermal etching (HEATE) method, a low-damage etching technique, and systematically elucidated the InGaN quantum disk diameter dependence of emission properties over a wide range from 12 to 2020 nm. Experimental validation of fundamental technologies for novel nanostructured optical devices, such as fabrication of ultrafine InGaN quantum disks with an average diameter of 9 nm that emit light clearly at room temperature, effective suppression of surface non-radiative recombination by saturated ozone water treatment, and development of ammonia-added HEATE method that enables high aspect ratio nanofabrication, was conducted to achieve the target of this research. The fabrication of nitride semiconductor ultra-fine nanostructures and the development of basic technologies for nanostructured optical devices were completed with better-than-expected results.
|
Free Research Field |
工学
|
Academic Significance and Societal Importance of the Research Achievements |
HEATE法による窒化物半導体の極限ナノ加工技術を確立し、優れた発光特性を有する極微細InGaNナノ構造のデバイス応用技術を開発した。極微細領域におけるInGaN/GaNナノ構造の光学特性に対する理解が進み、直径100nmまでの微細化と飽和オゾン水パッシベーションにより、薄膜量子井戸構造に対して顕著に発光効率が増大することが見いだされた。本研究の成果は、半導体ナノ構造の光物性の解明やナノ加工技術、表面安定化技術の開拓という学術的意義に加え、マイクロLEDディスプレイや超低消費電力ナノLED・ナノレーザなどへの適用が期待され、Society5.0への移行に資する重要な社会的意義を有する。
|