• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Superlubric control using structural change by compression of molecular bearing interface

Research Project

  • PDF
Project/Area Number 17H02785
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Thin film/Surface and interfacial physical properties
Research InstitutionThe University of Electro-Communications

Principal Investigator

Sasaki Naruo  電気通信大学, 大学院情報理工学研究科, 教授 (40360862)

Co-Investigator(Kenkyū-buntansha) 鈴木 勝  電気通信大学, 大学院情報理工学研究科, 教授 (20196869)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords超潤滑 / フラーレン / グラフェン / 圧力誘起転移 / 分子スイッチ / 原子間力顕微鏡 / 分子シミュレーション / ナノトライボロジー
Outline of Final Research Achievements

The compression response characteristics of graphene/C60/graphene interface nanostructures was discussed. First, we focused on the compressive properties of the nanostructure in which a single C60 molecule is sandwiched between graphene sheets. Comparing the effective spring constant of the entire interface system with those of single C60 and of C60-graphene interlayer, it was clarified that the C60/graphene interface system can be regarded as a series spring of C60 single molecule spring and C60-graphene interlayer spring. Next, we focused on the graphene sheet, which is a component of the interface structure, and we developed an effective potential function that coarse-grained the Tersoff potential function, which represents a covalent bond. As a result, we succeeded in increasing the calculation speed of graphene adhesion to 10,000 times that of the conventional Tersoff function.

Free Research Field

物性理論(表面物理学)

Academic Significance and Societal Importance of the Research Achievements

本研究プロジェクトで得られたグラフェン/C60/グラフェン界面構造の特異な圧力応答を利用すれば、特定の荷重で可逆的に超潤滑のONとOFFが切り替わる「摩擦可変(超潤滑)スイッチ」の開発につながる。本プロジェクトでは圧縮応答をC60単体、C60-グラフェン層間の機械特性から理解できることを示し、界面ナノ機械デバイスに向けた知見が得られた。また原子ポテンシャルを粗視化するポテンシャル関数を開発し、計算速度を1万倍まで上げたことで、これまでナノスケールに限定されていた機械特性の議論を、マイクロスケールに拡張し、マルチスケールトライボロジーへの可能性が拓かれた。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi