2019 Fiscal Year Final Research Report
Non-homogeneous Kinetics of Hybrid Absorption Heat Pump with Heat Storage Function Using Fine Crystal Particle Slurry
Project/Area Number |
17H03441
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Properties in chemical engineering process/Transfer operation/Unit operation
|
Research Institution | Gifu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
小林 信介 岐阜大学, 大学院工学研究科, 准教授 (30345920)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 温排熱回収 / 吸収式ヒートポンプ / スラリー / 蓄熱 / 気液界面 / 物質移動 / 微細結晶 / 高温生成 |
Outline of Final Research Achievements |
Fundamental study on LiBr/water absorption heat pump (AHP) using LiBr fine particle crystal slurry was performed to develop an innovative recovery system of exhausted heat at a middle temperature level, that is working in heating-up and refrigeration modes with a heat storage function. The slurry inhibits the solution from diluted in an interface between liquid and gas phases due to steam absorption, and allows the AHP operation under as high as concentration of saturation solubility. This performance contributes to significant improvement of steam absorption rate and generation of much higher temperature than a crystal-free uniform solution in a heating-up mode. The thermodynamic equilibrium analysis reveals that the slurry obtains also greater heat storage capacity than conventional phase change media. A heat storage type of hybrid AHP cycle is proposed to yield simultaneously high temperature above 120 °C and refrigeration at 7 °C recovering heat at a 80 °C level.
|
Free Research Field |
熱プロセス工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果の学術的および社会的意義は以下の通りである. 1)微細結晶スラリー吸収液界面での水蒸気吸収速度促進が,結晶溶解効果によることを定量的に解明することにより物質移動速度推算手法を確立でき,ガス吸収液スラリー気液界面現象の新規学理の構築,2)80℃レベルの未利用温排熱や太陽熱から120℃以上の蒸気と10℃以下の冷熱を同時に生成するハイブリッドAHPシステムの構築,3)微細結晶スラリーの蓄熱効果を利用して高密度蓄熱型AHP技術の確立,4)大量の未利用温熱を利活用できるレベルにアップグレード化する熱プロセスシステムを熱工学的に体系化し,1次エネルギー消費量の大幅削減・省エネルギー化.
|