• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of a novel coal gasifier with controlling volatile-char reactions and hydrodynamics

Research Project

  • PDF
Project/Area Number 17H03451
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Reaction engineering/Process system
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Fushimi Chihiro  東京農工大学, 工学(系)研究科(研究院), 准教授 (50451886)

Co-Investigator(Kenkyū-buntansha) 酒井 幹夫  東京大学, 大学院工学系研究科(工学部), 准教授 (00391342)
官 国清  弘前大学, 地域戦略研究所, 教授 (90573618)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsガス化炉 / 流動層 / 高効率ガス化 / ダウナー / 反応速度 / 気固分離
Outline of Final Research Achievements

Experiments of coal pyrolysis and gasification was conducted in a novel downer (i.e. co-current down flow) pyrolyzer and bubbling fluidized bed gasifier. The effect of activated carbon or non-porous carbon particles preheated at 1173 K was investigated. Results show the AC and the non-porous carbon greatly suppress the emission of tar owing to the decomposition of aromatic hydrocarbons into coke.
Cold gas efficiency (CGE)s of 85.0, 82.7 and 80.9% can be achieved at gasification temperatures of 800, 850 and 900C, respectively. There is a trade-off between the CGE and the gasifier design parameters. We conclude that a gasification temperature of 850C is the most suitable for TBCFB gasifiers.
By using Computational Fluid Dynamics (CFD), we simulated hydrodynamics of solids in a donwer or a novel conical downer with very large solids mass flux. By integrating the CFD with Coarse-grained Discrete Element Method CFD method, we simulated flow behaviors of the gas and solids in the TBCFB.

Free Research Field

化学工学

Academic Significance and Societal Importance of the Research Achievements

炭素系資源のガス化によるガス燃料(主にH2とCO)の生成効率指標として冷ガス効率があるが、これまで熱力学的に低温で効率が上がることが示唆されていた。本研究では、熱収支から冷ガス効率の熱力学的な理論最大値と、ガス化反応速度と反応時間および流動層内の粒子循環速度から実機の反応器大きさを明らかにした。
熱分解ガス化で問題であるタールをガスに変換するためにチャー(熱分解後の固体残渣)を用いた研究は多い。本研究では熱分解時に反応温度まで加熱した粒子を供給し、初期のタールの粒子への付着挙動やその付着炭素のガス化反応特性を初めて明らかにした。この得られた知見はバイオマスの低温ガス化にもそのまま適用可能である。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi