• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Annual Research Report

Multiple resource adaptation for low resource neural machine translation

Research Project

Project/Area Number 17H06822
Research InstitutionOsaka University

Principal Investigator

チョ シンキ  大阪大学, データビリティフロンティア機構, 特任助教(常勤) (70784891)

Project Period (FY) 2017-08-25 – 2019-03-31
Keywords機械翻訳 / ローリソース / ドメイン適応 / ニューラル機械翻訳
Outline of Annual Research Achievements

To improve the machine translation (MT) quality in this low resource scenarios, we studied the following in FY2018:
1. We continued our research by studying the topics of data adaptation using large-scale monolingual web corpora and multiple resource adapted system integration as scheduled. We published a journal paper in the journal of information processing, in which we conducted a comprehensive comparison of previous studies in these two topics.
2. We conducted a survey of domain adaptation for MT and published a survey paper at COLING 2018. Our survey paper covered the techniques for improving low resource domain translation in both historical and practical perspectives, which can be a good start point for both researchers and engineers working on this area. We also gave a talk on this topic to translators at JAITS 2019 to promote the practical use of these techniques.
3. We also studied more general topics for MT, which are not limited to low resource scenarios. We proposed a recursive neural network based pre-ordering model to improve the translation quality of distant language pairs such as Japanese-English, and published our work at ACL-SRW 2018 and the journal of natural language processing. We also studied a word rewarding model to improve the translation adequacy using bilingual dictionaries, and published our work at IWSLT 2018.
4. Using the techniques we developed in this project, we attended the MT shared task at WAT 2018. We have showed that our techniques can significantly improve low resource MT such as the Myanmar-English language pair.

Research Progress Status

平成30年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

平成30年度が最終年度であるため、記入しない。

  • Research Products

    (9 results)

All 2019 2018 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results) Remarks (1 results)

  • [Journal Article] 統計的機械翻訳のためのRecursive Neural Network による事前並び替えと分析2018

    • Author(s)
      瓦祐希, Chenhui Chu, 荒瀬由紀
    • Journal Title

      自然言語処理

      Volume: 26(1) Pages: 155-178

    • Peer Reviewed / Open Access
  • [Presentation] ニューラル機械翻訳における事前並び替えの影響分析2019

    • Author(s)
      瓦祐希, Chenhui Chu, 荒瀬由紀
    • Organizer
      言語処理学会 第25回年次大会, pp.1455-1458
  • [Presentation] 多国間法律の比較と統計分析のための多言語機械翻訳2019

    • Author(s)
      Chenhui Chu, 梶原 智之, 中島 悠太, 長原 一, 渡辺 理和, 大久保 規子
    • Organizer
      第119回人文科学とコンピュータ研究会発表会
  • [Presentation] Osaka University MT Systems for WAT 2018: Rewarding, Preordering, and Domain Adaptation2018

    • Author(s)
      Yuki Kawara, Yuto Takebayashi, Chenhui Chu and Yuki Arase
    • Organizer
      In Proceedings of the 5th Workshop on Asian Translation
    • Int'l Joint Research
  • [Presentation] Word Rewarding for Adequate Neural Machine Translation2018

    • Author(s)
      Yuto Takebayashi, Chenhui Chu, Yuki Arase and Masaaki Nagata
    • Organizer
      In Proceedings of the 15th International Workshop on Spoken Language Translation, pp. 14-22
    • Int'l Joint Research
  • [Presentation] A Survey of Domain Adaptation for Neural Machine Translation2018

    • Author(s)
      Chenhui Chu and Rui Wang
    • Organizer
      In Proceedings of the 27th International Conference on Computational Linguistics, pp. 1304-1319
    • Int'l Joint Research
  • [Presentation] Recursive Neural Network Based Preordering for English-to-Japanese Machine Translation2018

    • Author(s)
      Yuki Kawara, Chenhui Chu and Yuki Arase
    • Organizer
      In Proceedings of the ACL 2018 Student Research Workshop, pp. 21-27
    • Int'l Joint Research
  • [Presentation] ニューラル機械翻訳における分野適応の最先端2018

    • Author(s)
      Chenhui Chu
    • Organizer
      日本通訳翻訳学会第19回年次会
    • Invited
  • [Remarks] 研究者個人ホームページ

    • URL

      https://researchmap.jp/chu/

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi