2019 Fiscal Year Final Research Report
Robust Multiple Criteria Decision Aiding Using Interval Models
Project/Area Number |
17K18952
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Social systems engineering, Safety engineering, Disaster prevention engineering, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Keywords | 階層的意思決定法(AHP) / 区間解析 / 正規性条件 / 一対比較 / Dempster-Shafer理論 / UTA / 線形計画法 / 選好モデリング |
Outline of Final Research Achievements |
For decision aiding under multiple criteria, we need to model the decision maker's preference using preference data.In realworld problems, given preference data is often inconsistent and vague due to the insufficiency of information and knowledge. In this research, adopting an interval model to represent the vagueness, we propose estimation methods for the interval model and examine their usefulness. Several overlooked problems in the literatures are revealed and investigated theoretically.It is demonstrated that a useful interval model is estimated by the proposed estimation methods from the conventional pairwise comparison data. Moreover, the advantage of the proposed interval methods over the conventional methods is shown in the estimation of alternative ranking with consideration of vagueness.
|
Free Research Field |
システム計画数理
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,複数の基準を考慮して望ましい解を求める問題を考える.決定支援に必要な意思決定者の選好は,従来,決定論的なモデルで表されてきた.しかし,人の評価の曖昧さを鑑みれば選好を区間モデルで表すことが考えられる.決定論的モデルでは,平均的な評価による支援となる一方,区間モデルでは,可能な評価を考慮した決定支援が可能となる.従来法と同じ情報の下での区間モデルの定め方を提案するとともに,不確実性の下での最大リグレット最小化や最小利得最大化などを想定した場合には,提案法の方が良い推定を与えることを示した.また,従来見過ごされてきた意外で根本的な問題点を指摘し,その解決に役立つ理論的な結果を示した.
|