• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Articulatory text-to-speech synthesis based on digital waveguide mesh driven by deep neural network

Research Project

  • PDF
Project/Area Number 17K20004
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Human informatics and related fields
Research InstitutionNagoya Institute of Technology

Principal Investigator

Tokuda Keiichi  名古屋工業大学, 工学(系)研究科(研究院), 教授 (20217483)

Co-Investigator(Kenkyū-buntansha) 南角 吉彦  名古屋工業大学, 工学(系)研究科(研究院), 准教授 (80397497)
Project Period (FY) 2017-06-30 – 2020-03-31
Keywords音声合成 / 音声情報処理
Outline of Final Research Achievements

In order to construct a speech synthesis system that can flexibly generate expressive speech, we have developed a deep neural network-based text-to-speech synthesis system that incorporates an articulatory model based on human speech production mechanism into a text speech synthesis system based on a deep neural network. In order to improve the voice quality, we attempted to combine it with WaveNet and other voice waveform generation methods based on deep neural networks. Furthermore, we examined the method of controlling the voice quality and emotional expression based on the generative adversarial training.

Free Research Field

音声情報処理

Academic Significance and Societal Importance of the Research Achievements

スマートフォン、スマートスピーカー等、高度な情報機器が急速に普及しつつある中で、これらの情報機器と人間との間の情報交換の方法として音声インタフェースに期待がかかっている。これらの機械と自然な会話を行うためには、出力される合成音声は自在にあらゆる声質の音声を出力し、また、様々な感情表現を行うことが必須である。本研究はこのような人間のようにしゃべる機械の実現に貢献するものである。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi