• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2009 Fiscal Year Final Research Report

Heegaard structures and geometric structures of 3-manifolds

Research Project

  • PDF
Project/Area Number 18340018
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHiroshima University (2007-2009)
Osaka University (2006)

Principal Investigator

SAKUMA Makoto  Hiroshima University, 大学院・理学研究科, 教授 (30178602)

Co-Investigator(Kenkyū-buntansha) KAMADA Seiichi  広島大学, 大学院・理学研究科, 教授 (60254380)
NAGAI Toshitaka  広島大学, 大学院・理学研究科, 教授 (40112172)
MATSUMOTO Takao  広島大学, 大学院・理学研究科, 名誉教授 (50025467)
Co-Investigator(Renkei-kenkyūsha) UMEHARA Masaaki  大阪大学, 大学院・理学研究科, 教授 (90193945)
OHSHIKA Ken'ichi  大阪大学, 大学院・理学研究科, 教授 (70183225)
KONNO Kazuhiro  大阪大学, 大学院・理学研究科, 教授 (10186869)
MABUCHI Toshiki  大阪大学, 大学院・理学研究科, 教授 (80116102)
WADA Masaaki  大阪大学, 大学院・理学研究科, 教授 (80192821)
MIYACHI Hideki  大阪大学, 大学院・理学研究科, 教授 (40385480)
KOBAYASHI Tsuyoshi  奈良女子大学, 理学部, 教授 (00186751)
YAMASHITA Yasushi  奈良女子大学, 理学部, 教授 (70239987)
MORIMOTO Kanji  甲南大学, 理学部, 教授 (90200443)
NAKANISHI Toshihiro  島根大学, 総合理工学部, 教授 (00172354)
KOMORI Yohei  大阪市立大学, 大学院・理学研究科, 准教授 (70264794)
AKIYOSHI Hirotaka  近畿大学, 理工学部, 准教授 (80397611)
Project Period (FY) 2006 – 2009
Keywords3次元多様体 / ヘガード分解 / 幾何構造 / 双曲構造 / 穴あきトーラス
Research Abstract

We have concentrated on the study of the once-punctured torus, the simplest hyperbolic surface, believing that it would bring us to deep understanding of general hyperbolic surfaces, and obtained the following results. (1) We gave a complete description and proof to Jorgensen's theory on quasifuchsian punctured torus groups. (2) We found an intimate relation between the following two tessellations associated with a punctured torus bundles over the circle ; the Cannon-Thurston-Dicks fractal tessellation and the cusp triangulation induced by the canionical decomposition. We also proposed a conjecture concerning the canonical decompositions of punctured surface bundles over the circle. (3) We gave a complete characterization of those essential simple loops on the bridge sphere of a 2-bridge knot which are null-homotopic in the knot complement.

  • Research Products

    (13 results)

All 2010 2009 2008 2007 2006

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (6 results) Book (2 results)

  • [Journal Article] On hyperbolic once-punctured torus groups: Comparing two tessellations of the complex plane2010

    • Author(s)
      Makoto Sakuma, Warren Dicks
    • Journal Title

      Topology and its applications 156

      Pages: 1873-1899

    • Peer Reviewed
  • [Journal Article] On the distance between two Seifert surfaces of a knot2009

    • Author(s)
      Makoto Sakuma, Kenneth Shackleton
    • Journal Title

      Osaka J. Math 46

      Pages: 203-221

    • Peer Reviewed
  • [Journal Article] Epimorphisms among 2-bridge knot groups, The Zieschang Gedenkschrift2008

    • Author(s)
      Tomotada Ohtsuki, Makoto Sakuma
    • Journal Title

      Geometry and Topology Monograph 14

      Pages: 417-450

    • Peer Reviewed
  • [Journal Article] Epimorphisms among 2-bridge knot groups from the view point of markoff maps, Intelligence of low dimensional topology 20062007

    • Author(s)
      Makoto Sakuma
    • Journal Title

      World Scientific ( J. Scott carter, etal)

      Pages: 279-286

    • Peer Reviewed
  • [Journal Article] variations of McShane's identity for punctured surface groups, Proceedings of the workshop "Spaces of Kleinan groups and hyperbolic 3-manifolds"2006

    • Author(s)
      Hirotaka Akiyoshi, Hideki Miyachi, Makoto Sakuma
    • Journal Title

      London Math. Soc. Lecture Note Series(Y. Minsky, etal. ) 329

      Pages: 151-185

    • Peer Reviewed
  • [Presentation] Epimorphisms between 2-bridge link groups: simple loops on 2-bridge spheres2010

    • Author(s)
      Makoto Sakuma
    • Organizer
      The 6th East Asian School of Knots and Related Topics
    • Place of Presentation
      Nankai University, 中国
    • Year and Date
      2010-01-27
  • [Presentation] Epimorphisms among 2-bridge knot groups and end invariants of SL(2, C)-representations2009

    • Author(s)
      Makoto Sakuma
    • Organizer
      国際研究集会「Swiss Knots」
    • Place of Presentation
      Univ. Fribourg, スイス
    • Year and Date
      2009-03-19
  • [Presentation] Comparing two tessellations associated with punctured torus bundles overs the circle2008

    • Author(s)
      Makoto Sakuma
    • Organizer
      国際研究集会「Intelligence of low dimensional topology」
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2008-10-08
  • [Presentation] On the diatance between two Seifert surfaces of a knot2007

    • Author(s)
      Makoto Sakuma
    • Organizer
      国際研究集会「Braids, Groups and Manifolds in Toulouse」
    • Place of Presentation
      Univ. Paul Sabatier, フランス
    • Year and Date
      2007-09-08
  • [Presentation] n the diatance between two Seifert surfaces of a knot2007

    • Author(s)
      Makoto Sakuma
    • Organizer
      国際会議「Geometry and Topology Conference」
    • Place of Presentation
      北京大学, 中国
    • Year and Date
      2007-06-19
  • [Presentation] Punctured torus groups and 2-bridge knot groups2006

    • Author(s)
      Makoto Sakuma
    • Organizer
      国際研究集会「Analytic aspects of low dimensional geometry」
    • Place of Presentation
      arwick University, 英国
    • Year and Date
      2006-09-15
  • [Book] Punctured torus groups and 2-bridge knot groups, Lecture Notes in Math. 19092007

    • Author(s)
      Hirotaka Akiyoshi, Makoto Sakuma, Masaaki Wada, Yasushi Yamashita
    • Total Pages
      xlvi+252
    • Publisher
      Springer, Berline
  • [Book] The spaces of Kleinian groups and hyperbolic 3-manifolds2006

    • Author(s)
      Yaiir Minsky, Makoto Sakuma, Caroline Series (eds)
    • Total Pages
      vii+390
    • Publisher
      London Math. Soc. Lecture Notes Series

URL: 

Published: 2011-06-18   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi