• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2008 Fiscal Year Self-evaluation Report

Period integrals, derived categories, and geometries of moduli spaces

Research Project

  • PDF
Project/Area Number 18540014
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

細野 忍  The University of Tokyo, 大学院・数理科学研究科, 准教授 (60212198)

Project Period (FY) 2006 – 2009
Keywordsカラビ・ヤウ多様体 / ミラー対称性 / グロモフ・ウィッテン不変量
Research Abstract

グロモフ・ウィッテン不変量は,安定写像のモジュライ空間から定義されるシンプレクティック多様体の不変量である。この不変量は,特に複素3 次元カラビ・ヤウ多様体の場合ミラー対称性によって,周期積分を用いた具体的な計算が可能となる。不変量の具体的な計算処方の数学的構造の解明を行い,また,具体的な計算を通してミラー対称性の圏論的な定式化法およびD ブレインと呼ばれる対象のモジュライ空間の構造解明に向けた事象の蓄積を行なう。

  • Research Products

    (4 results)

All 2009 2007 2006

All Journal Article (4 results) (of which Peer Reviewed: 4 results)

  • [Journal Article] BCOV rings and holomorphic anomaly equation,to be published in Adv2009

    • Author(s)
      S.Hosono
    • Journal Title

      Studies in Pure Math

    • Peer Reviewed
  • [Journal Article] Higher genus Gromov-Witten invariants of the Grassmannian and the Pfaffian Calabi-Yau 3-folds Adv.2009

    • Author(s)
      S. Hosono, Y. Konishi
    • Journal Title

      Theor. Math. Phys 13

      Pages: 463-495

    • Peer Reviewed
  • [Journal Article] On Stokes Matrices of Calabi-Yau Hypersurfaces Adv.2007

    • Author(s)
      C. Doran, S. Hosono
    • Journal Title

      Theor.Math. Phys 11

      Pages: 147-174

    • Peer Reviewed
  • [Journal Article] Central Charges, symplectic forms,and hypergeometric series in local mirror symmetry, AMS/IP Studies in Adv2006

    • Author(s)
      S.Hosono
    • Journal Title

      Math 38

      Pages: 405-436

    • Peer Reviewed

URL: 

Published: 2010-06-11   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi