• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Annual Research Report

Entropy dissipative structure and mathematical analysis for complex fluids

Research Project

Project/Area Number 18H01131
Research InstitutionWaseda University

Principal Investigator

川島 秀一  早稲田大学, 理工学術院, 教授(任期付) (70144631)

Co-Investigator(Kenkyū-buntansha) 柴田 良弘  早稲田大学, 理工学術院, 教授 (50114088)
小川 卓克  東北大学, 理学研究科, 教授 (20224107)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywords非線形偏微分方程式 / 双曲型平衡則系 / 複雑流体 / 消散構造 / 記憶型消散効果 / 減衰評価 / 非線形波 / 安定性
Outline of Annual Research Achievements

複雑流体に関わる様々な非線形偏微分方程式系を対象に、その数学的エントロピー、系に内在する非線形構造および消散構造に着目し、数理解析研究の新たな展望を開くことを目指して研究を行い、次のような成果を得た。
1.記憶項を持つ空間1次元対称双曲系を考察した。記憶核は指数減衰関数の特別な場合を扱い、記憶項は (1) 対称拡散型、(2) 対称消散型 の2通りを考察した。これらの系に対しその消散構造を明らかにし、解の減衰評価、時間無限大での解の漸近形を求めた。記憶項を持つ系の数学解析に貢献する研究成果である。
2.圧縮性 Navier-Stokes-Korteweg 方程式とは、Korteweg 型分散項を持つ圧縮性 Navier-Stokes 方程式である。この系に対し定数平衡解の近傍での初期値問題を考察し、$L^p$ 型 Besov 空間での時間大域解の存在と時間減衰評価を示した。Korteweg 型分散項が、圧縮性 Navier-Stokes 方程式の持つ減衰構造に及ぼす影響を明らかにする上で、貴重な研究成果である。
3.GENERIC と呼ばれる手法を適用し、複雑流体のモデリングを行い、そのモデルの数理解析を行った。特に、その空間1次元モデルが一般の双曲型平衡則系の形を取ること、数学的エントロピーを有し従って対称化可能であること、さらに安定性条件を満たすことを確認した。その結果として、時間大域解の存在と最良の時間減衰評価を示すことが出来た。複雑流体モデルの数理解析に新たな展望を拓く研究成果である。

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

  • Research Products

    (23 results)

All 2022 2021

All Journal Article (13 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 11 results,  Open Access: 3 results) Presentation (10 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results)

  • [Journal Article] Dissipative structure and asymptotic profiles for symmetric hyperbolic systems with memory2021

    • Author(s)
      Taniue Shogo、Kawashima Shuichi
    • Journal Title

      Journal of Hyperbolic Differential Equations

      Volume: 18 Pages: 453~492

    • DOI

      10.1142/S0219891621500144

    • Peer Reviewed
  • [Journal Article] The L energy methods and decay for the compressible Navier-Stokes equations with capillarity2021

    • Author(s)
      Kawashima Shuichi、Shibata Yoshihiro、Xu Jiang
    • Journal Title

      Journal de Mathematiques Pures et Appliquees

      Volume: 154 Pages: 146~184

    • DOI

      10.1016/j.matpur.2021.08.009

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Thermodynamically consistent modeling for complex fluids and mathematical analysis2021

    • Author(s)
      Suzuki Yukihito、Ohnawa Masashi、Mori Naofumi、Kawashima Shuichi
    • Journal Title

      Mathematical Models and Methods in Applied Sciences

      Volume: 31 Pages: 1919~1949

    • DOI

      10.1142/S0218202521500421

    • Peer Reviewed
  • [Journal Article] Local Well-Posedness for Free Boundary Problem of Viscous Incompressible Magnetohydrodynamics2021

    • Author(s)
      Oishi Kenta、Shibata Yoshihiro
    • Journal Title

      Mathematics

      Volume: 9 Pages: 461~461

    • DOI

      10.3390/math9050461

    • Peer Reviewed / Open Access
  • [Journal Article] On the Evolution of Compressible and Incompressible Viscous Fluids with a Sharp Interface2021

    • Author(s)
      Kubo Takayuki、Shibata Yoshihiro
    • Journal Title

      Mathematics

      Volume: 9 Pages: 621~621

    • DOI

      10.3390/math9060621

    • Peer Reviewed / Open Access
  • [Journal Article] On local solutions to a free boundary problem for incompressible viscous magnetohydrodynamics in the $L_p$ approach2021

    • Author(s)
      Y. Shibata, W. Zajaczkowski
    • Journal Title

      Dissertationes Mathematicae

      Volume: 566 Pages: 1~102

    • DOI

      10.4064/d.777-787-3-2021

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier?Sobolev space2021

    • Author(s)
      Matsui Tatsuya、Nakasato Ryosuke、Ogawa Takayoshi
    • Journal Title

      Journal of Differential Equations

      Volume: 271 Pages: 414~446

    • DOI

      10.1016/j.jde.2020.08.023

  • [Journal Article] Global well-posedness for the incompressible Navier?Stokes equations in the critical Besov space under the Lagrangian coordinates2021

    • Author(s)
      Ogawa Takayoshi、Shimizu Senjo
    • Journal Title

      Journal of Differential Equations

      Volume: 274 Pages: 613~651

    • DOI

      10.1016/j.jde.2020.10.023

    • Peer Reviewed
  • [Journal Article] Well-posedness for the Cauchy problem of convectiondiffusion equations in the critical uniformly local Lebesgue spaces2021

    • Author(s)
      M. R. Haque, N. Ioku, T. Ogawa, R. Sato
    • Journal Title

      Differential Integral Equations

      Volume: 34 Pages: 223~244

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Singular limit problem to the Keller-Segel system in critical spaces and related medical problems - An application of maximal regularity2021

    • Author(s)
      T. Ogawa
    • Journal Title

      Springer Proc. Math. Stat.

      Volume: 346 Pages: 103~182

    • DOI

      10.1007/978-981-33-4822-6-4

    • Peer Reviewed
  • [Journal Article] Inhomogeneous Dirichlet boundary value problem for nonlinear Schr?dinger equations in the upper half-space2021

    • Author(s)
      Hayashi Nakao、Kaikina Elena I.、Ogawa Takayoshi
    • Journal Title

      Partial Differential Equations and Applications

      Volume: 2 Pages: -

    • DOI

      10.1007/s42985-021-00120-9

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Maximal $$L^1$$-regularity of the heat equation and application to a free boundary problem of the Navier-Stokes equations near the half-space2021

    • Author(s)
      Ogawa Takayoshi、Shimizu Senjo
    • Journal Title

      Journal of Elliptic and Parabolic Equations

      Volume: 7 Pages: 509~535

    • DOI

      10.1007/s41808-021-00133-w

    • Peer Reviewed
  • [Journal Article] Ill-posedness for the Cauchy problem of the two-dimensional compressible Navier-Stokes equations for an ideal gas2021

    • Author(s)
      Iwabuchi Tsukasa、Ogawa Takayoshi
    • Journal Title

      Journal of Elliptic and Parabolic Equations

      Volume: 7 Pages: 571~587

    • DOI

      10.1007/s41808-021-00136-7

  • [Presentation] Global wellposedness for two phase problem of Navier-Stokes equations in ubbounded domains2022

    • Author(s)
      Y. Shibata
    • Organizer
      East Asian Workshop on Partial Differential Equations in Fluid Dynamics
    • Int'l Joint Research / Invited
  • [Presentation] New thought on Matsumura-Nishida theory in the maximal regularity framework2021

    • Author(s)
      Y. Shibata
    • Organizer
      Fluid under Control/Summer School
    • Int'l Joint Research / Invited
  • [Presentation] Matsumura and Nishida theorym in the maximal Lp-Lq regularity framework2021

    • Author(s)
      Y. Shibata
    • Organizer
      International Workshop on Recent Advances in Nonlinear PDE
    • Int'l Joint Research / Invited
  • [Presentation] R-solver, Maximal Regularity and Mathematical Fuid Dynamics2021

    • Author(s)
      Y. Shibata
    • Organizer
      Necas Center 偏微分方程式セミナー(チェコアカデミィ)
    • Int'l Joint Research / Invited
  • [Presentation] Global wellposedness for two phase problem of Navier-Stokes equations in ubbounded domains2021

    • Author(s)
      Y. Shibata
    • Organizer
      Internatial Workshop on Multiphase Flows: Analysis, Modelling and Numerics
    • Int'l Joint Research / Invited
  • [Presentation] End-point maximal regularity and free boundary problem of the Navier-Stokes equations2021

    • Author(s)
      T. Ogawa
    • Organizer
      MSJ-KSM Joint Meeting 2021 (日本数学会-韓国数学会合同講演会 2021 年)
    • Int'l Joint Research / Invited
  • [Presentation] Finite time blow-up and concentration phenomena of a solution to a drift-diffusion equation in higher demension2021

    • Author(s)
      小川卓克
    • Organizer
      研究集会 「非線型の諸問題」
    • Invited
  • [Presentation] Finite time blow-up and concentration phenomena of a solution to a drift-diffusion equation in higher demension2021

    • Author(s)
      小川卓克
    • Organizer
      RACMaS パターンダイナミクス数理セミナー
    • Invited
  • [Presentation] Finite time blow-up and concentration phenomena of a solution to a drift-diffusion equation in higher demension2021

    • Author(s)
      小川卓克
    • Organizer
      早稲田大学 応用解析研究会
    • Invited
  • [Presentation] 「非線型発展方程式の臨界構造について」―流体方程式をめぐって―2021

    • Author(s)
      小川卓克
    • Organizer
      東北大学 理学研究科同窓会 合同講演会 (オンデマンド方式)
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi