• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Entropy dissipative structure and mathematical analysis for complex fluids

Research Project

  • PDF
Project/Area Number 18H01131
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionWaseda University

Principal Investigator

KAWASHIMA Shuichi  早稲田大学, 理工学術院, 教授(任期付) (70144631)

Co-Investigator(Kenkyū-buntansha) 柴田 良弘  早稲田大学, 理工学術院, 教授 (50114088)
小川 卓克  東北大学, 理学研究科, 教授 (20224107)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywords非線形偏微分方程式 / 双曲型平衡則系 / 複雑流体 / 消散構造 / 時間大域解 / 減衰評価 / 非線形波 / 安定性
Outline of Final Research Achievements

We studied various mathematical models which are formulated as systems of nonlinear partial differential equations in the fields of fluid mechanics, elasto-dynamics and plasma physics. We investigated the nonlinear structure based on the convexity of the entropy and the dissipative structure of the systems, and by using a rigorous method of analysis, we proved the asymptotic stability of solutions. Also we studied the corresponding nonlinear difference problem obtained as a discretization of the model from the viewpoint of conservation law and entropy dissipation, and proved the stability structure.

Free Research Field

偏微分方程式

Academic Significance and Societal Importance of the Research Achievements

流体力学、弾性体力学やプラズマ物理学などの分野に現れる様々な自然現象の解明には、適切な数理モデルの構築とその数理解析が重要である。本研究では、保存則、エントロピー則の観点から自然な形で数理モデルの構築を行い、エントロピー消散構造、エントロピーの凸性に基づく非線形構造、系に内在する消散構造を明らかにし、それに基づく形での精密な安定性解析の理論を与えた。複雑な数理現象の解明に向けた数理モデリングとその数理解析において、正統的となるべき手法を提案した研究成果である。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi