• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Advanced use of trade statistics based on data fusion

Research Project

  • PDF
Project/Area Number 18H01659
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 25010:Social systems engineering-related
Research InstitutionHiroshima University

Principal Investigator

Fuse Masaaki  広島大学, 先進理工系科学研究科(工), 准教授 (70415743)

Co-Investigator(Kenkyū-buntansha) 瀬谷 創  神戸大学, 工学研究科, 准教授 (20584296)
塚井 誠人  広島大学, 先進理工系科学研究科(工), 准教授 (70304409)
力石 真  広島大学, 先進理工系科学研究科(国), 准教授 (90585845)
坂本 将吾  一般財団法人電力中央研究所, 環境科学研究所, 主任研究員 (50580057)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywords貿易統計 / 不整合問題 / Data Fusion / 機械学習 / 非負値行列因子分解 / 水俣条約 / 不整合要因
Outline of Final Research Achievements

This study aims to develop a method for create true trade volume from trade statistics based on data fusion approach. As the results, the study built an identification system of factors affecting the discrepancies with trade statistics. In addition, Non-negative Matrix Factorization method was applied into the discrepancies with trade statistics as a newly data fusion approach. Finally, the effectiveness of trade regulation to mercury and mercury added products in the Minamata Convention was evaluated from the perspective of the trade discrepancy.

Free Research Field

社会システム

Academic Significance and Societal Importance of the Research Achievements

本研究成果の学術的意義は,貿易統計の不整合問題を「修正すべく統計的問題」から「活用すべき統計的性質」と再解釈することで,貿易統計の新しい用途とそのための新しい方法論を提示した点である.貿易統計の新しい用途である国際条約の実効性評価と,貿易統計の新しい方法論である不整合要因診断システムや非負値行列因子分解法はビックデータサイエンスに貢献するため,社会的意義の高い研究成果といえる.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi