• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Basic development of deep ultraviolet plasmonics and its application to highly efficient deep ultraviolet light emitting devices

Research Project

  • PDF
Project/Area Number 18H01903
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 30020:Optical engineering and photon science-related
Research InstitutionOsaka Prefecture University

Principal Investigator

Okamoto Koichi  大阪府立大学, 工学(系)研究科(研究院), 教授 (50467453)

Co-Investigator(Kenkyū-buntansha) 藤田 静雄  京都大学, 工学研究科, 教授 (20135536)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsプラズモニクス / 深紫外 / 酸化物半導体 / 発光素子 / 量子構造 / 金属ナノ構造 / 表面プラズモン / NHoM構造
Outline of Final Research Achievements

We have succeeded in extending the surface plasmon resonance of metal nanostructures to the deep-UV wavelength region in order to improve the efficiency of deep-UV light-emitting devices using plasmonics. Through electromagnetic field analysis calculations, fabrication of metal nanostructures, and optical characterization, we were able to enhance, sharpen, and control the resonance spectrum over a wide range of wavelengths, including the deep-UV wavelength region around 200 nm. We also succeeded in fabricating oxide semiconductors with strong DUV emission properties using a mist CVD system, and observed and analyzed the enhancement of DUV emission spectra of nitride and oxide semiconductors using a DUV emission evaluation system with an LDLS white light source. These results provide basic developments of DUV plasmonics and a guideline for realization of high-efficiency DUV light-emitting devices.

Free Research Field

ナノ光学、プラズモニクス

Academic Significance and Societal Importance of the Research Achievements

本研究で確立した深紫外プラズモニクスは、殺菌・消毒、微細加工、光メモリー、医療応用等で重要な高効率深紫外LEDを実現に導くものである。また我々が構築したプラズモニクス技術は、光技術を空間限界,時間限界,波長限界といった様々な限界を超えて飛躍的に発展させる可能性を秘めている。よって高効率LEDのみならず、高効率太陽電池、無閾値ナノレーザー、超高解像イメージング、超高解像ナノ加工、超高感度センシング、超高密度メモリ、超高集積ナノ光回路など、様々な光技術を飛躍的に進歩させる可能性を秘めている。よって本研究成果は来るべき超スマート社会を支えるもので、学術的にも社会的にも有意義であると確信している。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi