2022 Fiscal Year Final Research Report
Development of Japanese CCG parser "lightblue"
Project/Area Number |
18H03284
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | Ochanomizu University |
Principal Investigator |
Bekki Daisuke お茶の水女子大学, 基幹研究院, 教授 (90431783)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 計算言語学 / 組合せ範疇文法 / 統語解析 / 深層ニューラルネットワーク |
Outline of Final Research Achievements |
The aim of this research was to develop a CCG syntactic parser based on a hybrid method of theoretical linguistics and deep neural networks. We successfully formulated and implemented RNN-CCG, a system that converts the grammatical theory of RNNG from CFG to CCG. We also studied automatic theorem prover with Dependent-Type Semantics (DTS) and successfully implemented a proof search algorithm by Haskell. In parallel, we also conducted research to evaluate the performance of natural language inference tasks with large-scale language models and showed their limitations, and empirical research in theoretical linguistics using dependent tye semantics, such as comparative constructions, Weak Crossover and the Proviso problem.
|
Free Research Field |
計算言語学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、理論言語学と機械学習を融合させた深い意味解析を行う手法や、自然言語理解の自動化を可能にするCCGパーザと依存型意味論(DTS)の研究など、自然言語処理における重要な課題に取り組んできました。これらの研究成果は、査読付き国際学会や国内学会の発表を通じて学術的に評価され、また企業向けのセミナーやメディア掲載などを通じて社会に還元されました。今後、自然言語処理のさらなる進展に向けて、理論言語学と深層学習のハイブリッドアプローチを進めることが求められます。
|